IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v484y2023ics0304380023002107.html
   My bibliography  Save this article

Cyanobacterial blooms management: A modified optimization model for interdisciplinary research

Author

Listed:
  • Liu, Ming
  • Wu, Jiani
  • Zhang, Shuhua
  • Liang, Jing

Abstract

Controlling cyanobacterial blooms is a complex problem due to the biological features of cyanobacteria and the management objective of minimizing economic damages under a limited budget. Although bio-economic models provide hopeful methods for cyanobacteria control, the existing spatial-temporal optimization models do not consider both the heterogeneity of the natural loss rate of cyanobacteria in various growth stages as well as the heterogeneity of cyanobacteria spore migration between different regions. In this paper, we develop a new spatial-dynamic model to describe the reproduction and dispersal behavior of cyanobacteria. We consider the above heterogeneities and propose an integrated bio-economic optimization model as a valuable decision framework for water managers to allocate limited resources for cyanobacteria control. Specifically, our model incorporates maximum capacity constraints in terms of resource constraints, ensuring that cyanobacterial growth follows the fundamental biological principle of survival of the fittest. The potential applicability of our model is illustrated by a computational experiment. The results demonstrate that the investment exhibits diminishing marginal returns while allocating resources to the initially infected area can obtain the best bang for the buck under most test scenarios. This study is an interdisciplinary research that can assist managers in making more accurate decisions regarding budget allocation, the timing, and the location of cyanobacteria removal operations.

Suggested Citation

  • Liu, Ming & Wu, Jiani & Zhang, Shuhua & Liang, Jing, 2023. "Cyanobacterial blooms management: A modified optimization model for interdisciplinary research," Ecological Modelling, Elsevier, vol. 484(C).
  • Handle: RePEc:eee:ecomod:v:484:y:2023:i:c:s0304380023002107
    DOI: 10.1016/j.ecolmodel.2023.110480
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380023002107
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2023.110480?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Edholm, Christina J. & Tenhumberg, Brigitte & Guiver, Chris & Jin, Yu & Townley, Stuart & Rebarber, Richard, 2018. "Management of invasive insect species using optimal control theory," Ecological Modelling, Elsevier, vol. 381(C), pages 36-45.
    2. Jones, Hannah & White, Andrew & Lurz, Peter & Shuttleworth, Craig, 2017. "Mathematical models for invasive species management: Grey squirrel control on Anglesey," Ecological Modelling, Elsevier, vol. 359(C), pages 276-284.
    3. Onal, Sevilay & Akhundov, Najmaddin & Büyüktahtakın, İ. Esra & Smith, Jennifer & Houseman, Gregory R., 2020. "An integrated simulation-optimization framework to optimize search and treatment path for controlling a biological invader," International Journal of Production Economics, Elsevier, vol. 222(C).
    4. Hyytiäinen, Kari & Lehtiniemi, Maiju & Niemi, Jarkko K. & Tikka, Kimmo, 2013. "An optimization framework for addressing aquatic invasive species," Ecological Economics, Elsevier, vol. 91(C), pages 69-79.
    5. Bushaj, Sabah & Büyüktahtakın, İ. Esra & Haight, Robert G., 2022. "Risk-averse multi-stage stochastic optimization for surveillance and operations planning of a forest insect infestation," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1094-1110.
    6. Rezaei, Jafar, 2016. "Best-worst multi-criteria decision-making method: Some properties and a linear model," Omega, Elsevier, vol. 64(C), pages 126-130.
    7. Eyyüb Y. Kıbış & İ. Esra Büyüktahtakın & Robert G. Haight & Najmaddin Akhundov & Kathleen Knight & Charles E. Flower, 2021. "A Multistage Stochastic Programming Approach to the Optimal Surveillance and Control of the Emerald Ash Borer in Cities," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 808-834, May.
    8. Horie, Tetsuya & Haight, Robert G. & Homans, Frances R. & Venette, Robert C., 2013. "Optimal strategies for the surveillance and control of forest pathogens: A case study with oak wilt," Ecological Economics, Elsevier, vol. 86(C), pages 78-85.
    9. David Aadland & Charles Sims & David Finnoff, 2015. "Spatial Dynamics of Optimal Management in Bioeconomic Systems," Computational Economics, Springer;Society for Computational Economics, vol. 45(4), pages 545-577, April.
    10. Epanchin-Niell, Rebecca S. & Wilen, James E., 2012. "Optimal spatial control of biological invasions," Journal of Environmental Economics and Management, Elsevier, vol. 63(2), pages 260-270.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. İ. Esra Büyüktahtakın & Robert G. Haight, 2018. "A review of operations research models in invasive species management: state of the art, challenges, and future directions," Annals of Operations Research, Springer, vol. 271(2), pages 357-403, December.
    2. Kıbış, Eyyüb Y. & Büyüktahtakın, İ. Esra, 2017. "Optimizing invasive species management: A mixed-integer linear programming approach," European Journal of Operational Research, Elsevier, vol. 259(1), pages 308-321.
    3. Liu, Yanxu & Sims, Charles, 2016. "Spatial-dynamic externalities and coordination in invasive species control," Resource and Energy Economics, Elsevier, vol. 44(C), pages 23-38.
    4. Sims, Charles & Aadland, David & Finnoff, David & Hochard, Jacob, 2020. "What are the benefits of delisting endangered species and who receives them?: Lessons from the gray wolf recovery in Greater Yellowstone," Ecological Economics, Elsevier, vol. 174(C).
    5. Sabah Bushaj & Xuecheng Yin & Arjeta Beqiri & Donald Andrews & İ. Esra Büyüktahtakın, 2023. "A simulation-deep reinforcement learning (SiRL) approach for epidemic control optimization," Annals of Operations Research, Springer, vol. 328(1), pages 245-277, September.
    6. Tom Kompas & Pham Van Ha & Hoa-Thi-Minh Nguyen & Graeme Garner & Sharon Roche & Iain East, 2020. "Optimal surveillance against foot-and-mouth disease: A sample average approximation approach," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-21, July.
    7. Onal, Sevilay & Akhundov, Najmaddin & Büyüktahtakın, İ. Esra & Smith, Jennifer & Houseman, Gregory R., 2020. "An integrated simulation-optimization framework to optimize search and treatment path for controlling a biological invader," International Journal of Production Economics, Elsevier, vol. 222(C).
    8. de Ávila-Simas, Sunshine & Morato, Marcelo M. & Reynalte-Tataje, David A. & Silveira, Hector B. & Zaniboni-Filho, Evoy & E. Normey-Rico, Julio, 2019. "Model-based predictive control for the regulation of the golden mussel Limnoperna fortunei (Dunker, 1857)," Ecological Modelling, Elsevier, vol. 406(C), pages 84-97.
    9. Eyyüb Y. Kıbış & İ. Esra Büyüktahtakın & Robert G. Haight & Najmaddin Akhundov & Kathleen Knight & Charles E. Flower, 2021. "A Multistage Stochastic Programming Approach to the Optimal Surveillance and Control of the Emerald Ash Borer in Cities," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 808-834, May.
    10. Charles Sims & David Finnoff & Jason F. Shogren, 2018. "Taking One for the Team: Is Collective Action More Responsive to Ecological Change?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(3), pages 589-615, July.
    11. Grogan, Kelly A. & Chakravarty, Shourish, 2017. "The Feasibility of Area-wide Pest Management under Heterogeneity and Uncertainty: The Case of Citrus Health Management Areas," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 259188, Agricultural and Applied Economics Association.
    12. Bonneau, Mathieu & Martin, Julien & Peyrard, Nathalie & Rodgers, Leroy & Romagosa, Christina M. & Johnson, Fred A., 2019. "Optimal spatial allocation of control effort to manage invasives in the face of imperfect detection and misclassification," Ecological Modelling, Elsevier, vol. 392(C), pages 108-116.
    13. Kelly M. Cobourn & Gregory S. Amacher & Robert G. Haight, 2019. "Cooperative Management of Invasive Species: A Dynamic Nash Bargaining Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(4), pages 1041-1068, April.
    14. Gray, Dennis & Fan, Xiaoli, 2020. "Optimal Control of Mountain Pine Beetle Under Different Climate Scenarios: A Spatiotemporal Bioeconomic Model," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304436, Agricultural and Applied Economics Association.
    15. Albers, Heidi J. & Hall, Kim Meyer & Lee, Katherine D. & Taleghan, Majid Alkaee & Dietterich, Thomas G., 2018. "The Role of Restoration and Key Ecological Invasion Mechanisms in Optimal Spatial-Dynamic Management of Invasive Species," Ecological Economics, Elsevier, vol. 151(C), pages 44-54.
    16. Atallah, Shadi S., 2017. "The bio-economics of managing invasive plant externalities in forests with heterogeneous landowner preferences," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258540, Agricultural and Applied Economics Association.
    17. James J. H. Liou & Perry C. Y. Liu & Huai-Wei Lo, 2020. "A Failure Mode Assessment Model Based on Neutrosophic Logic for Switched-Mode Power Supply Risk Analysis," Mathematics, MDPI, vol. 8(12), pages 1-19, December.
    18. Junnan Wu & Xin Liu & Dianqi Pan & Yichen Zhang & Jiquan Zhang & Kai Ke, 2023. "Research on Safety Evaluation of Municipal Sewage Treatment Plant Based on Improved Best-Worst Method and Fuzzy Comprehensive Method," Sustainability, MDPI, vol. 15(11), pages 1-15, May.
    19. Atallah, Shadi S. & Huang, Ju-Chin & Leahy, Jessica & Bennett, Karen, 2020. "Preference Heterogeneity and Neighborhood Effect in Invasive Species Control: The Case of Glossy Buckthorn in New Hampshire and Maine Forests," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304623, Agricultural and Applied Economics Association.
    20. Liang, Fuqi & Brunelli, Matteo & Rezaei, Jafar, 2020. "Consistency issues in the best worst method: Measurements and thresholds," Omega, Elsevier, vol. 96(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:484:y:2023:i:c:s0304380023002107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.