IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v285y2014icp22-29.html
   My bibliography  Save this article

Cotton crop phenology in a new temperature regime

Author

Listed:
  • Luo, Qunying
  • Bange, Michael
  • Clancy, Loretta

Abstract

The daily outputs of the CSIRO Conformal Cubic Atmospheric Model driven by four general circulation models (GCMs) were used by a stochastic weather generator, LARS-WG, to construct four local climate change scenarios (CCSs) at nine key cotton production areas in eastern Australia. These CCSs were then linked to daily temperature-driven models of cotton phenology to examine the magnitude of the effects of increased temperature on the initiation and duration of key crop phenophases and on the occurrence of heat stress and cold shocks during the growing season. The results show that when using 1st Oct. as sowing time (1) the timing of emergence, 1st square, 1st flower and 1st open boll advanced 1–9, 4–13, 5–14 and 8–16 days, respectively, for the period centred on 2030 compared to baseline; (2) when crops were planted 10 days earlier, the emergence stage occurred earlier in most of the locations while other phenological events changed slightly (∼1 day) in comparison with 1st Oct. sowing; when crops were planted 10 days later, all these events were generally delayed (∼1.5 days) in comparison with 1st Oct. sowing; (3) the timing of the last effective square, last effective flower and last harvestable boll were delayed 7–12, 6–9 and 3–9 days, respectively, across locations (except St George) and GCMs; (4) the fruit development period increased up to 2–3 weeks; (5) the number of hot days increased across all locations and growing season (GS) months except May with the warmer months (Dec., Jan. and Feb.) and locations increased more; and (6) the number of cold shocks decreased or remained the same across locations and GS months except Jan. and Feb. with cold months and places decreased more. The results show that there will be less impact of cold temperatures on earlier growth and potentially a longer growing season that can improve crop yield. However, there will be more incidences of hot days impacting growth, and more rapid crop development in late phenological stages (especially during boll filling) that may limit the opportunities associated with increases in growing season length without adjustments in management.

Suggested Citation

  • Luo, Qunying & Bange, Michael & Clancy, Loretta, 2014. "Cotton crop phenology in a new temperature regime," Ecological Modelling, Elsevier, vol. 285(C), pages 22-29.
  • Handle: RePEc:eee:ecomod:v:285:y:2014:i:c:p:22-29
    DOI: 10.1016/j.ecolmodel.2014.04.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380014001999
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2014.04.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qunying Luo, 2011. "Temperature thresholds and crop production: a review," Climatic Change, Springer, vol. 109(3), pages 583-598, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Xiaoping & Qi, Zhiming & Gui, Dongwei & Gu, Zhe & Ma, Liwang & Zeng, Fanjiang & Li, Lanhai, 2019. "Simulating impacts of climate change on cotton yield and water requirement using RZWQM2," Agricultural Water Management, Elsevier, vol. 222(C), pages 231-241.
    2. Li, Na & Yao, Ning & Li, Yi & Chen, Junqing & Liu, Deli & Biswas, Asim & Li, Linchao & Wang, Tianxue & Chen, Xinguo, 2021. "A meta-analysis of the possible impact of climate change on global cotton yield based on crop simulation approaches," Agricultural Systems, Elsevier, vol. 193(C).
    3. Qunying Luo & Michael Bange & David Johnston, 2016. "Environment and cotton fibre quality," Climatic Change, Springer, vol. 138(1), pages 207-221, September.
    4. Desheng Wang & Chengkun Wang & Lichao Xu & Tiecheng Bai & Guozheng Yang, 2022. "Simulating Growth and Evaluating the Regional Adaptability of Cotton Fields with Non-Film Mulching in Xinjiang," Agriculture, MDPI, vol. 12(7), pages 1-20, June.
    5. Allyson Williams & Neil White & Shahbaz Mushtaq & Geoff Cockfield & Brendan Power & Louis Kouadio, 2015. "Quantifying the response of cotton production in eastern Australia to climate change," Climatic Change, Springer, vol. 129(1), pages 183-196, March.
    6. Kamkar, Behnam & Feyzbakhsh, Mohammad Taghi & Mokhtarpour, Hassan & Barbir, Jelena & Grahić, Jasmin & Tabor, Sylwester & Azadi, Hossein, 2023. "Effect of heat stress during anthesis on the Summer Maize grain formation: Using integrated modelling and multi-criteria GIS-based method," Ecological Modelling, Elsevier, vol. 481(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Delpeuch, Claire & Leblois, Antoine, 2014. "The Elusive Quest for Supply Response to Cash-Crop Market Reforms in Sub-Saharan Africa: The Case of Cotton," World Development, Elsevier, vol. 64(C), pages 521-537.
    2. Matteo Zampieri & Andrea Toreti & Andrej Ceglar & Pierluca De Palma & Thomas Chatzopoulos, 2020. "Analysing the resilience of the European commodity production system with PyResPro, the Python Production Resilience package," Papers 2006.08976, arXiv.org, revised Jun 2020.
    3. Kamal Kumar Murari & Sandeep Mahato & T. Jayaraman & Madhura Swaminathan, 2018. "Extreme Temperatures and Crop Yields in Karnataka, India," Journal, Review of Agrarian Studies, vol. 8(2), pages 92-114, July-Dece.
    4. Amarasingha, R.P.R.K. & Suriyagoda, L.D.B. & Marambe, B. & Gaydon, D.S. & Galagedara, L.W. & Punyawardena, R. & Silva, G.L.L.P. & Nidumolu, U. & Howden, M., 2015. "Simulation of crop and water productivity for rice (Oryza sativa L.) using APSIM under diverse agro-climatic conditions and water management techniques in Sri Lanka," Agricultural Water Management, Elsevier, vol. 160(C), pages 132-143.
    5. Hertel, Thomas W. & Lobell, David B., 2014. "Agricultural adaptation to climate change in rich and poor countries: Current modeling practice and potential for empirical contributions," Energy Economics, Elsevier, vol. 46(C), pages 562-575.
    6. Fontes, Francisco & Gorst, Ashley & Palmer, Charles, 2020. "Does choice of drought index influence estimates of drought-induced rice losses in India?," Environment and Development Economics, Cambridge University Press, vol. 25(5), pages 459-481, October.
    7. Chen, Xiaoping & Qi, Zhiming & Gui, Dongwei & Gu, Zhe & Ma, Liwang & Zeng, Fanjiang & Li, Lanhai, 2019. "Simulating impacts of climate change on cotton yield and water requirement using RZWQM2," Agricultural Water Management, Elsevier, vol. 222(C), pages 231-241.
    8. Ackerman, Frank & Stanton, Elizabeth A., 2013. "Climate Impacts on Agriculture: A Challenge to Complacency?," Working Papers 179109, Tufts University, Global Development and Environment Institute.
    9. Allyson Williams & Neil White & Shahbaz Mushtaq & Geoff Cockfield & Brendan Power & Louis Kouadio, 2015. "Quantifying the response of cotton production in eastern Australia to climate change," Climatic Change, Springer, vol. 129(1), pages 183-196, March.
    10. Chatzopoulos, Thomas & Domínguez, Ignacio Pèrez & Zampieri, Matteo & Toreti, Andrea, 2017. "Extreme Weather and Global Agricultural Markets: Experimental Analysis of the Impacts of Heat Waves on Wheat Markets," International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 2017(1), June.
    11. N. W. Arnell & J. A. Lowe & A. J. Challinor & T. J. Osborn, 2019. "Global and regional impacts of climate change at different levels of global temperature increase," Climatic Change, Springer, vol. 155(3), pages 377-391, August.
    12. Basurto-Hernandez, S. & Maddison, D. & Banerjee, A., 2018. "The effects of climate change on crop and livestock choices," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277517, International Association of Agricultural Economists.
    13. Vanshika Dhamija & Roopam Shukla & Christoph Gornott & PK Joshi, 2020. "Consistency in Vulnerability Assessments of Wheat to Climate Change—A District-Level Analysis in India," Sustainability, MDPI, vol. 12(19), pages 1-16, October.
    14. World Bank, 2015. "Agricultural Risk Management in the Face of Climate Change," World Bank Publications - Reports 22897, The World Bank Group.
    15. Rory G. J. Fitzpatrick & Douglas J. Parker & John H. Marsham & David P. Rowell & Lawrence S. Jackson & Declan Finney & Chetan Deva & Simon Tucker & Rachael Stratton, 2020. "How a typical West African day in the future-climate compares with current-climate conditions in a convection-permitting and parameterised convection climate model," Climatic Change, Springer, vol. 163(1), pages 267-296, November.
    16. Ajetomobi, Joshua Olusegun, 2016. "Sensitivity of Crop Yield to Extreme Weather in Nigeria," 2016 Fifth International Conference, September 23-26, 2016, Addis Ababa, Ethiopia 246919, African Association of Agricultural Economists (AAAE).
    17. Kindie Tesfaye & Pramod K. Aggarwal & Fasil Mequanint & Paresh B. Shirsath & Clare M. Stirling & Arun Khatri-Chhetri & Dil Bahadur Rahut, 2017. "Climate Variability and Change in Bihar, India: Challenges and Opportunities for Sustainable Crop Production," Sustainability, MDPI, vol. 9(11), pages 1-22, November.
    18. Ramos, Tiago B. & Darouich, Hanaa & Oliveira, Ana R. & Farzamian, Mohammad & Monteiro, Tomás & Castanheira, Nádia & Paz, Ana & Gonçalves, Maria C. & Pereira, Luís S., 2023. "Water use and soil water balance of Mediterranean tree crops assessed with the SIMDualKc model in orchards of southern Portugal," Agricultural Water Management, Elsevier, vol. 279(C).
    19. Shah, Hassnain & Siderius, Christian & Hellegers, Petra, 2021. "Limitations to adjusting growing periods in different agroecological zones of Pakistan," Agricultural Systems, Elsevier, vol. 192(C).
    20. Yining Ma & Suri Guga & Jie Xu & Yulin Su & Xingpeng Liu & Zhijun Tong & Jiquan Zhang, 2022. "Agricultural Vulnerability Assessment of High-Temperature Disaster in Shaanxi Province of China," Agriculture, MDPI, vol. 12(7), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:285:y:2014:i:c:p:22-29. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.