Author
Listed:
- Ghajarnia, Navid
- Bende-Michl, Ulrike
- Sharples, Wendy
- Carrara, Elisabetta
- Tijs, Sigrid
Abstract
Australia's agriculture has faced prolonged extreme heat and drought periods, leading to significant economic and agricultural losses. Climate projections show a rising risk of droughts and heatwaves in Australia, making it essential to understand these dynamics for effective planning and adaptation. We define agricultural heat and/or water stress (AgHWS) indices using crop and soil physiology thresholds. This crop-specific approach enhances our analysis of compound events' impacts on agricultural commodities. We examine both the compound and individual AgHWS conditions, tracking their changes through time. This is achieved through the implementation of historical reconstruction (back to 1961) and future projections (to 2099) using suitable CMIP5 models for Australia. For this, we utilise daily temperature and soil moisture data from the Australian Bureau of Meteorology's high-resolution (0.05°) National Hydrological Projections using CMIP5 climate forcing together with the Australian Water Resources Assessment – Landscape (AWRA-L) model. These projections are examined under two Representative Concentration Pathways (RCP4.5 and RCP8.5) and are compared to historical outputs from the AWRA-L model. Results indicate that: (1) AgHWS conditions are projected to increase in frequency, and intensity in future years with earlier onsets and prolonged durations across Australia; (2) AgHWS duration will rise from approximately 10 days per event in the late historical period to around 30 days per event for RCP 4.5, and 50 days per event for RCP 8.5 in the late future; (3) Northern Australia is projected to be severely impacted by AgHWS conditions while agricultural regions in south-eastern and south-western Australia appear to be less so; and (4) Water stress contributes most to the creation of AgHWS conditions, underscoring the importance of soil water conservation management. By analysing the spatio-temporal patterns of changes in both individual and compound AgHWS conditions, this study can support decision-making and helps inform targeted adaptation strategies for the agricultural sector across Australia.
Suggested Citation
Ghajarnia, Navid & Bende-Michl, Ulrike & Sharples, Wendy & Carrara, Elisabetta & Tijs, Sigrid, 2025.
"Evolving patterns of compound heat and water stress conditions: Implications for agriculture futures in Australia,"
Agricultural Water Management, Elsevier, vol. 316(C).
Handle:
RePEc:eee:agiwat:v:316:y:2025:i:c:s0378377425002872
DOI: 10.1016/j.agwat.2025.109573
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:316:y:2025:i:c:s0378377425002872. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.