IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v222y2011i15p2825-2834.html
   My bibliography  Save this article

Ecological network determination of sectoral linkages, utility relations and structural characteristics on urban ecological economic system

Author

Listed:
  • Liu, G.Y.
  • Yang, Z.F.
  • Chen, B.
  • Zhang, Y.

Abstract

Analyzing the structure and functioning of the urban system revealed ways to optimize its structure by adjusting the relationships among compartments, thereby demonstrating how ecological network analysis can be used in urban system research. Based on the account of the extended exergy utilization in the sector of urban socio-economic system, which is considered as the composition of extraction (Ex), conversion (Co), agriculture (Ag), industry (In), transportation (Tr), tertiary (Te) and households (Do) sectors, an urban ecological network model is constructed to gain insights into the economic processes oriented to sustainable urban development. Taking Beijing city as the case, the network accounting and related ecological evaluation of a practical urban economy are carried out in this study in the light of flux, efficiency, utility and structure analysis. The results showed that a large quantity of energy and resources have to be consumed to maintain the structure and function of a city. The thermodynamic efficiencies of individual sector in Beijing remain at a low level. The social system in Beijing is a highly competitive network, and there are 8 competitive relations and only two mutualistic ones. The Domestic and Agricultural sector are the major controlling factors of the system. Moreover, the assessment results of Beijing are compared with the other three socio-economic systems, Norway, UK and Italy, and the ecological network function and structure comparisons are correspondingly illuminated and discussed. The conclusions indicate that the exergy-based network analysis can be refined to become an integrative tool for evaluation, policy-making and regulation for urban socio-economic system management concerning structure and efficiency at urban levels.

Suggested Citation

  • Liu, G.Y. & Yang, Z.F. & Chen, B. & Zhang, Y., 2011. "Ecological network determination of sectoral linkages, utility relations and structural characteristics on urban ecological economic system," Ecological Modelling, Elsevier, vol. 222(15), pages 2825-2834.
  • Handle: RePEc:eee:ecomod:v:222:y:2011:i:15:p:2825-2834
    DOI: 10.1016/j.ecolmodel.2011.04.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380011003127
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2011.04.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wall, Goran, 1987. "Exergy conversion in the Swedish society," Resources and Energy, Elsevier, vol. 9(1), pages 55-73, June.
    2. Chen, G.Q. & Qi, Z.H., 2007. "Systems account of societal exergy utilization: China 2003," Ecological Modelling, Elsevier, vol. 208(2), pages 102-118.
    3. Tollner, E.W. & Kazanci, C. & Schramski, J.R. & Patten, B.C., 2009. "Control system approaches to ecological systems analysis: Invariants and frequency response," Ecological Modelling, Elsevier, vol. 220(22), pages 3233-3240.
    4. Costanza, Robert & Herendeen, Robert A., 1984. "Embodied energy and economic value in the United States economy: 1963, 1967 and 1972," Resources and Energy, Elsevier, vol. 6(2), pages 129-163, June.
    5. Zhang, Bo & Chen, G.Q., 2010. "Physical sustainability assessment for the China society: Exergy-based systems account for resources use and environmental emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(6), pages 1527-1545, August.
    6. Fath, Brian D. & Killian, Megan C., 2007. "The relevance of ecological pyramids in community assemblages," Ecological Modelling, Elsevier, vol. 208(2), pages 286-294.
    7. Zhang, Yan & Yang, Zhifeng & Fath, Brian D. & Li, Shengsheng, 2010. "Ecological network analysis of an urban energy metabolic system: Model development, and a case study of four Chinese cities," Ecological Modelling, Elsevier, vol. 221(16), pages 1865-1879.
    8. Scharler, Ursula M. & Fath, Brian D., 2009. "Comparing network analysis methodologies for consumer–resource relations at species and ecosystems scales," Ecological Modelling, Elsevier, vol. 220(22), pages 3210-3218.
    9. Catherine Hardy & Thomas E. Graedel, 2002. "Industrial Ecosystems as Food Webs," Journal of Industrial Ecology, Yale University, vol. 6(1), pages 29-38, January.
    10. Wall, Göran, 1990. "Exergy conversion in the Japanese society," Energy, Elsevier, vol. 15(5), pages 435-444.
    11. Shevtsov, Jane & Kazanci, Caner & Patten, Bernard C., 2009. "Dynamic environ analysis of compartmental systems: A computational approach," Ecological Modelling, Elsevier, vol. 220(22), pages 3219-3224.
    12. Fath, Brian D. & Halnes, Geir, 2007. "Cyclic energy pathways in ecological food webs," Ecological Modelling, Elsevier, vol. 208(1), pages 17-24.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meirong Su & Yan Zhang & Gengyuan Liu & Linyu Xu & Lixiao Zhang & Zhifeng Yang, 2013. "Urban Ecosystem Health Assessment: Perspectives and Chinese Practice," IJERPH, MDPI, vol. 10(11), pages 1-12, November.
    2. Lishuo Shi & Wen Chen & Jiaqi Xu & Li Ling, 2020. "Trends and Characteristics of Inter-Provincial Migrants in Mainland China and Its Relation with Economic Factors: A Panel Data Analysis from 2011 to 2016," Sustainability, MDPI, vol. 12(2), pages 1-23, January.
    3. Guojiao Chen & Cuiyou Yao & Lurong Fan & Linze Li & Haiqing Cao, 2022. "Sustainability-oriented system dynamics method for coordinated megacity ecosystem development: the case of Beijing, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(9), pages 11027-11057, September.
    4. Schaubroeck, Thomas & Staelens, Jeroen & Verheyen, Kris & Muys, Bart & Dewulf, Jo, 2012. "Improved ecological network analysis for environmental sustainability assessment; a case study on a forest ecosystem," Ecological Modelling, Elsevier, vol. 247(C), pages 144-156.
    5. Han, Baolong & Liu, Hongxiao & Wang, Rusong, 2015. "Urban ecological security assessment for cities in the Beijing–Tianjin–Hebei metropolitan region based on fuzzy and entropy methods," Ecological Modelling, Elsevier, vol. 318(C), pages 217-225.
    6. Borrett, Stuart R. & Sheble, Laura & Moody, James & Anway, Evan C., 2018. "Bibliometric review of ecological network analysis: 2010–2016," Ecological Modelling, Elsevier, vol. 382(C), pages 63-82.
    7. Yanzhen Hou & Zhenlong Zhang & Yuerong Wang & Honghu Sun & Chang Xu, 2022. "Function Evaluation and Coordination Analysis of Production–Living–Ecological Space Based on the Perspective of Type–Intensity–Connection: A Case Study of Suzhou, China," Land, MDPI, vol. 11(11), pages 1-21, November.
    8. Guarino, Raffaele & Corsi, Giulio & Muñoz-Ulecia, Enrique, 2023. "How sustainable development goals have transformed our world? Evolution of the ecological networks of the Italian economy," Ecological Modelling, Elsevier, vol. 484(C).
    9. Zhang, Yan & Li, Yanxian & Zheng, Hongmei, 2017. "Ecological network analysis of energy metabolism in the Beijing-Tianjin-Hebei (Jing-Jin-Ji) urban agglomeration," Ecological Modelling, Elsevier, vol. 351(C), pages 51-62.
    10. Liu, Shiliang & Yin, Yijie & Liu, Xuehua & Cheng, Fangyan & Yang, Juejie & Li, Junran & Dong, Shikui & Zhu, Annah, 2017. "Ecosystem Services and landscape change associated with plantation expansion in a tropical rainforest region of Southwest China," Ecological Modelling, Elsevier, vol. 353(C), pages 129-138.
    11. Kiss, Tibor & Kiss, Viktor Miklos, 2018. "Ecology-related resilience in urban planning – A complex approach for Pécs (Hungary)," Ecological Economics, Elsevier, vol. 144(C), pages 160-170.
    12. Li, Yanxian & Wang, Xinjing & Tian, Xin & Zhang, Yan, 2018. "Understanding the mechanism of urban material metabolism with ecological network analysis: An experimental study of Wuxi, China," Ecological Modelling, Elsevier, vol. 367(C), pages 58-67.
    13. Chun Fu & Xiaoqiang Tu & An Huang, 2021. "Identification and Characterization of Production–Living–Ecological Space in a Central Urban Area Based on POI Data: A Case Study for Wuhan, China," Sustainability, MDPI, vol. 13(14), pages 1-25, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi, Hai & Dong, Zhiliang & Dong, Shaohui & Sun, Xiaotian & Zhao, Yiran & Li, Yu, 2021. "Extended exergy accounting for smelting and pressing of metals industry in China," Resources Policy, Elsevier, vol. 74(C).
    2. Liao, Wenjie & Heijungs, Reinout & Huppes, Gjalt, 2012. "Thermodynamic analysis of human–environment systems: A review focused on industrial ecology," Ecological Modelling, Elsevier, vol. 228(C), pages 76-88.
    3. Dai, Jing & Chen, Bin & Sciubba, Enrico, 2014. "Extended exergy based ecological accounting for the transportation sector in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 229-237.
    4. Dai, Jing & Fath, Brian & Chen, Bin, 2012. "Constructing a network of the social-economic consumption system of China using extended exergy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4796-4808.
    5. Chen, G.Q. & Chen, Z.M., 2011. "Greenhouse gas emissions and natural resources use by the world economy: Ecological input–output modeling," Ecological Modelling, Elsevier, vol. 222(14), pages 2362-2376.
    6. Serrenho, André Cabrera & Warr, Benjamin & Sousa, Tânia & Ayres, Robert U. & Domingos, Tiago, 2016. "Structure and dynamics of useful work along the agriculture-industry-services transition: Portugal from 1856 to 2009," Structural Change and Economic Dynamics, Elsevier, vol. 36(C), pages 1-21.
    7. Zhang, Bo & Chen, G.Q., 2010. "Physical sustainability assessment for the China society: Exergy-based systems account for resources use and environmental emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(6), pages 1527-1545, August.
    8. Jadhao, Sachin B. & Pandit, Aniruddha B. & Bakshi, Bhavik R., 2017. "The evolving metabolism of a developing economy: India’s exergy flows over four decades," Applied Energy, Elsevier, vol. 206(C), pages 851-857.
    9. Ricardo Manso & Tânia Sousa & Tiago Domingos, 2017. "Do the Different Exergy Accounting Methodologies Provide Consistent or Contradictory Results? A Case Study with the Portuguese Agricultural, Forestry and Fisheries Sector," Energies, MDPI, vol. 10(8), pages 1-31, August.
    10. Alfonso Biondi & Enrico Sciubba, 2021. "Extended Exergy Analysis (EEA) of Italy, 2013–2017," Energies, MDPI, vol. 14(10), pages 1-21, May.
    11. Chen, B. & Chen, G.Q., 2007. "Modified ecological footprint accounting and analysis based on embodied exergy--a case study of the Chinese society 1981-2001," Ecological Economics, Elsevier, vol. 61(2-3), pages 355-376, March.
    12. Hao, Xiaoqing & An, Haizhong & Qi, Hai & Gao, Xiangyun, 2016. "Evolution of the exergy flow network embodied in the global fossil energy trade: Based on complex network," Applied Energy, Elsevier, vol. 162(C), pages 1515-1522.
    13. Chen, G.Q. & Qi, Z.H., 2007. "Systems account of societal exergy utilization: China 2003," Ecological Modelling, Elsevier, vol. 208(2), pages 102-118.
    14. Ertesvåg, Ivar S & Mielnik, Michal, 2000. "Exergy analysis of the Norwegian society," Energy, Elsevier, vol. 25(10), pages 957-973.
    15. Borrett, Stuart R. & Sheble, Laura & Moody, James & Anway, Evan C., 2018. "Bibliometric review of ecological network analysis: 2010–2016," Ecological Modelling, Elsevier, vol. 382(C), pages 63-82.
    16. Chen, G.Q. & Jiang, M.M. & Yang, Z.F. & Chen, B. & Ji, Xi & Zhou, J.B., 2009. "Exergetic assessment for ecological economic system: Chinese agriculture," Ecological Modelling, Elsevier, vol. 220(3), pages 397-410.
    17. Ayres, Robert U, 2001. "The minimum complexity of endogenous growth models:," Energy, Elsevier, vol. 26(9), pages 817-838.
    18. Zhang, Xiaohong & Wu, Liqian & Zhang, Rong & Deng, Shihuai & Zhang, Yanzong & Wu, Jun & Li, Yuanwei & Lin, Lili & Li, Li & Wang, Yinjun & Wang, Lilin, 2013. "Evaluating the relationships among economic growth, energy consumption, air emissions and air environmental protection investment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 259-270.
    19. Saidur, R. & Sattar, M.A. & Masjuki, H.H. & Abdessalam, H. & Shahruan, B.S., 2007. "Energy and exergy analysis at the utility and commercial sectors of Malaysia," Energy Policy, Elsevier, vol. 35(3), pages 1956-1966, March.
    20. Sousa, Tânia & Brockway, Paul E. & Cullen, Jonathan M. & Henriques, Sofia Teives & Miller, Jack & Serrenho, André Cabrera & Domingos, Tiago, 2017. "The Need for Robust, Consistent Methods in Societal Exergy Accounting," Ecological Economics, Elsevier, vol. 141(C), pages 11-21.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:222:y:2011:i:15:p:2825-2834. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.