IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v353y2017icp129-138.html
   My bibliography  Save this article

Ecosystem Services and landscape change associated with plantation expansion in a tropical rainforest region of Southwest China

Author

Listed:
  • Liu, Shiliang
  • Yin, Yijie
  • Liu, Xuehua
  • Cheng, Fangyan
  • Yang, Juejie
  • Li, Junran
  • Dong, Shikui
  • Zhu, Annah

Abstract

Rapid plantation expansion and its associated impacts on habitat fragmentation and landscape connectivity in many tropical areas has raised increasing concerns as to its impact on Ecosystem Services (ES). Using the InVEST modelling suite, we evaluated critical ES dynamics in four zones of varying plantation expansion intensity (high, medium, low and no plantation expansion) in Xishuangbanna prefecture in Southwest China from 1976 to 2012. Based on these results, we also exmained the relationship between ES and landscape pattern and connectivity derived by the “probability of connectivity” model. We found that during the study period, plantation area increased more than 20 times in Xishuangbanna prefecture as a whole, while broad-leaved forest cover decreased by nearly 30%. The impact of plantation on ES was substantial at both the regional and local scale. Carbon stocks and water yield services decreased by 15.48% and 10.85%, respectively, from 1976 to 2012 throughout the region as a whole. Within the selected study zones, carbon stock and water yeild decreased by 45% and 32%, respectively, from the no plantation to the high plantation zones in 2012 specifically. Plantation expansion has also resulted in a decrease in natural forest cover and a high level of habitat fragmentation. Landscape connectivity decreased by a range of 54.64–95.58% throughout the study area, with 134.58km2 of forest patches of high importance reduced to medium or low importance during the study period. Correlation analysis showed that carbon storage was more closely correlated to landscape connectivity than forest habitat percentage, large patch index or cohesion index. Together, these results highlight that habitat configuration with a high connectivity level between fragmented patches is important for maintaining critical Ecosystem Services.

Suggested Citation

  • Liu, Shiliang & Yin, Yijie & Liu, Xuehua & Cheng, Fangyan & Yang, Juejie & Li, Junran & Dong, Shikui & Zhu, Annah, 2017. "Ecosystem Services and landscape change associated with plantation expansion in a tropical rainforest region of Southwest China," Ecological Modelling, Elsevier, vol. 353(C), pages 129-138.
  • Handle: RePEc:eee:ecomod:v:353:y:2017:i:c:p:129-138
    DOI: 10.1016/j.ecolmodel.2016.03.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380016300680
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2016.03.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Norman Myers & Russell A. Mittermeier & Cristina G. Mittermeier & Gustavo A. B. da Fonseca & Jennifer Kent, 2000. "Biodiversity hotspots for conservation priorities," Nature, Nature, vol. 403(6772), pages 853-858, February.
    2. Jane Qiu, 2009. "Where the rubber meets the garden," Nature, Nature, vol. 457(7227), pages 246-247, January.
    3. Liu, G.Y. & Yang, Z.F. & Chen, B. & Zhang, Y., 2011. "Ecological network determination of sectoral linkages, utility relations and structural characteristics on urban ecological economic system," Ecological Modelling, Elsevier, vol. 222(15), pages 2825-2834.
    4. Bodin, Örjan & Saura, Santiago, 2010. "Ranking individual habitat patches as connectivity providers: Integrating network analysis and patch removal experiments," Ecological Modelling, Elsevier, vol. 221(19), pages 2393-2405.
    5. Li, Y. & Chen, B. & Yang, Z.F., 2009. "Ecological network analysis for water use systems—A case study of the Yellow River Basin," Ecological Modelling, Elsevier, vol. 220(22), pages 3163-3173.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei, Lai & Luo, Yun & Wang, Miao & Su, Shiliang & Pi, Jianhua & Li, Guie, 2020. "Essential fragmentation metrics for agricultural policies: Linking landscape pattern, ecosystem service and land use management in urbanizing China," Agricultural Systems, Elsevier, vol. 182(C).
    2. Raviv, Orna & Shiri, Zemah-Shamir & Ido, Izhaki & Alon, Lotan, 2021. "The effect of wildfire and land-cover changes on the economic value of ecosystem services in Mount Carmel Biosphere Reserve, Israel," Ecosystem Services, Elsevier, vol. 49(C).
    3. Kevin Thellmann & Marc Cotter & Sabine Baumgartner & Anna Treydte & Georg Cadisch & Folkard Asch, 2018. "Tipping Points in the Supply of Ecosystem Services of a Mountainous Watershed in Southeast Asia," Sustainability, MDPI, vol. 10(7), pages 1-15, July.
    4. Wan, Wei & Liu, Zhong & Li, Kejiang & Wang, Guiman & Wu, Hanqing & Wang, Qingyun, 2021. "Drought monitoring of the maize planting areas in Northeast and North China Plain," Agricultural Water Management, Elsevier, vol. 245(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Borrett, Stuart R. & Sheble, Laura & Moody, James & Anway, Evan C., 2018. "Bibliometric review of ecological network analysis: 2010–2016," Ecological Modelling, Elsevier, vol. 382(C), pages 63-82.
    2. Mao, Xufeng & Yang, Zhifeng, 2011. "Functional assessment of interconnected aquatic ecosystems in the Baiyangdian Basin—An ecological-network-analysis based approach," Ecological Modelling, Elsevier, vol. 222(23), pages 3811-3820.
    3. Laxmi D. Bhatta & Sunita Chaudhary & Anju Pandit & Himlal Baral & Partha J. Das & Nigel E. Stork, 2016. "Ecosystem Service Changes and Livelihood Impacts in the Maguri-Motapung Wetlands of Assam, India," Land, MDPI, vol. 5(2), pages 1-14, June.
    4. McLennan, D. & Sharma, R., 2012. "The Delivering Ecological Services Index (DESI)," Working papers 119, Rimisp Latin American Center for Rural Development.
    5. Maeda, Eduardo Eiji & Clark, Barnaby J.F. & Pellikka, Petri & Siljander, Mika, 2010. "Modelling agricultural expansion in Kenya's Eastern Arc Mountains biodiversity hotspot," Agricultural Systems, Elsevier, vol. 103(9), pages 609-620, November.
    6. Evelyn Asante-Yeboah & George Ashiagbor & Kwabena Asubonteng & Stefan Sieber & Justice C. Mensah & Christine Fürst, 2022. "Analyzing Variations in Size and Intensities in Land Use Dynamics for Sustainable Land Use Management: A Case of the Coastal Landscapes of South-Western Ghana," Land, MDPI, vol. 11(6), pages 1-28, May.
    7. Jaiswal, Sreeja & Balietti, Anca & Schäffer, Daniel, 2023. "Environmental Protection and Labor Market Composition," Working Papers 0736, University of Heidelberg, Department of Economics.
    8. Elisa Barbour & Lara Kueppers, 2012. "Conservation and management of ecological systems in a changing California," Climatic Change, Springer, vol. 111(1), pages 135-163, March.
    9. Tyler M Harms & Kevin T Murphy & Xiaodan Lyu & Shane S Patterson & Karen E Kinkead & Stephen J Dinsmore & Paul W Frese, 2017. "Using landscape habitat associations to prioritize areas of conservation action for terrestrial birds," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-21, March.
    10. van der Hoff, Richard & Nascimento, Nathália & Fabrício-Neto, Ailton & Jaramillo-Giraldo, Carolina & Ambrosio, Geanderson & Arieira, Julia & Afonso Nobre, Carlos & Rajão, Raoni, 2022. "Policy-oriented ecosystem services research on tropical forests in South America: A systematic literature review," Ecosystem Services, Elsevier, vol. 56(C).
    11. Brannstrom, Christian, 2001. "Conservation-with-Development Models in Brazil's Agro-Pastoral Landscapes," World Development, Elsevier, vol. 29(8), pages 1345-1359, August.
    12. Brendan Fisher & Stephen Polasky & Thomas Sterner, 2011. "Conservation and Human Welfare: Economic Analysis of Ecosystem Services," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 48(2), pages 151-159, February.
    13. Pütz, S. & Groeneveld, J. & Alves, L.F. & Metzger, J.P. & Huth, A., 2011. "Fragmentation drives tropical forest fragments to early successional states: A modelling study for Brazilian Atlantic forests," Ecological Modelling, Elsevier, vol. 222(12), pages 1986-1997.
    14. Paige, Sarah B. & Malavé, Carly & Mbabazi, Edith & Mayer, Jonathan & Goldberg, Tony L., 2015. "Uncovering zoonoses awareness in an emerging disease ‘hotspot’," Social Science & Medicine, Elsevier, vol. 129(C), pages 78-86.
    15. Stephanie D. Maier & Jan Paul Lindner & Javier Francisco, 2019. "Conceptual Framework for Biodiversity Assessments in Global Value Chains," Sustainability, MDPI, vol. 11(7), pages 1-34, March.
    16. Poonam Tripathi & Mukund Dev Behera & Partha Sarathi Roy, 2017. "Optimized grid representation of plant species richness in India—Utility of an existing national database in integrated ecological analysis," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-13, March.
    17. Davis, Katrina & Pannell, David J. & Kragt, Marit & Gelcich, Stefan & Schilizzi, Steven, 2014. "Accounting for enforcement is essential to improve the spatial allocation of marine restricted-use zoning systems," Working Papers 195718, University of Western Australia, School of Agricultural and Resource Economics.
    18. Norman Myers, 2003. "Conservation of Biodiversity: How Are We Doing?," Environment Systems and Decisions, Springer, vol. 23(1), pages 9-15, March.
    19. Shah, M., 2018. "Reforming India’s water governance to meet 21st century challenges: practical pathways to realizing the vision of the Mihir Shah Committee," IWMI Working Papers H049192, International Water Management Institute.
    20. Juliana Silveira dos Santos & Fausto Miziara & Hayla da Silva Fernandes & Renato Cezar Miranda & Rosane Garcia Collevatti, 2021. "Technification in Dairy Farms May Reconcile Habitat Conservation in a Brazilian Savanna Region," Sustainability, MDPI, vol. 13(10), pages 1-15, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:353:y:2017:i:c:p:129-138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.