IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v222y2011i23p3811-3820.html
   My bibliography  Save this article

Functional assessment of interconnected aquatic ecosystems in the Baiyangdian Basin—An ecological-network-analysis based approach

Author

Listed:
  • Mao, Xufeng
  • Yang, Zhifeng

Abstract

Many individual aquatic ecosystems are hydraulically interconnected and form specific network structures that display integral characteristics. The functional assessment of individual aquatic ecosystems is important, yet inadequate, for developing effective protection and restoration policies in basins, in which multiple interconnected aquatic ecosystems are involved. Here, we developed a framework to use ecological network analysis for functional assessment of a large system composed of various aquatic ecosystems in the context of network-based management. Five storage factor-included network indices were used to characterize the system functioning that was defined here as a performance with a certain of system activities and organization. A deviation index (D), combining normalized input, internal and output ascendency, was used to analyze the degree and causes of system functional variation. China's Baiyangdian Lake, a typical aquatic ecosystem, was taken as a case study. The results demonstrated that these storage factor-included network indices could well depict the system attributes and provide integral functional assessment of the aquatic ecosystems network in the Baiyangdian Basin. The functions of the aquatic ecosystems network presented distinct seasonal fluctuations, and there was a continuous decline in system functioning over the period of 1959–1978. Both natural and human causes contributed to the functional degradation, while the latter one dominated the degradation. Current study provided an example of how the network analysis might improve the understanding of the integral functioning of interconnected aquatic ecosystems.

Suggested Citation

  • Mao, Xufeng & Yang, Zhifeng, 2011. "Functional assessment of interconnected aquatic ecosystems in the Baiyangdian Basin—An ecological-network-analysis based approach," Ecological Modelling, Elsevier, vol. 222(23), pages 3811-3820.
  • Handle: RePEc:eee:ecomod:v:222:y:2011:i:23:p:3811-3820
    DOI: 10.1016/j.ecolmodel.2011.10.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030438001100487X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2011.10.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tobor-Kapłon, Maria A. & Holtkamp, Remko & Scharler, Ursula M. & Doroszuk, Agnieszka & Kuenen, Frans J.A. & Bloem, Jaap & de Ruiter, Peter C., 2007. "Evaluation of information indices as indicators of environmental stress in terrestrial soils," Ecological Modelling, Elsevier, vol. 208(1), pages 80-90.
    2. Molle, François & Wester, Philippus & Hirsch, Philip, 2010. "River basin closure: Processes, implications and responses," Agricultural Water Management, Elsevier, vol. 97(4), pages 569-577, April.
    3. Fiscus, Daniel A., 2009. "Comparative network analysis toward characterization of systemic organization for human–environmental sustainability," Ecological Modelling, Elsevier, vol. 220(22), pages 3123-3132.
    4. Cohen, Matthew J. & Brown, Mark T., 2007. "A model examining hierarchical wetland networks for watershed stormwater management," Ecological Modelling, Elsevier, vol. 201(2), pages 179-193.
    5. Chen, H. & Zhao, Y.W., 2011. "Evaluating the environmental flows of China's Wolonghu wetland and land use changes using a hydrological model, a water balance model, and remote sensing," Ecological Modelling, Elsevier, vol. 222(2), pages 253-260.
    6. Schramski, J.R. & Gattie, D.K. & Patten, B.C. & Borrett, S.R. & Fath, B.D. & Whipple, S.J., 2007. "Indirect effects and distributed control in ecosystems: Distributed control in the environ networks of a seven-compartment model of nitrogen flow in the Neuse River Estuary, USA—Time series analysis," Ecological Modelling, Elsevier, vol. 206(1), pages 18-30.
    7. Borrett, S.R. & Salas, A.K., 2010. "Evidence for resource homogenization in 50 trophic ecosystem networks," Ecological Modelling, Elsevier, vol. 221(13), pages 1710-1716.
    8. Zhang, Yan & Yang, Zhifeng & Fath, Brian D. & Li, Shengsheng, 2010. "Ecological network analysis of an urban energy metabolic system: Model development, and a case study of four Chinese cities," Ecological Modelling, Elsevier, vol. 221(16), pages 1865-1879.
    9. Whipple, Stuart J. & Borrett, Stuart R. & Patten, Bernard C. & Gattie, David K. & Schramski, John R. & Bata, Seth A., 2007. "Indirect effects and distributed control in ecosystems: Comparative network environ analysis of a seven-compartment model of nitrogen flow in the Neuse River estuary, USA—Time series analysis," Ecological Modelling, Elsevier, vol. 206(1), pages 1-17.
    10. Bodin, Örjan & Saura, Santiago, 2010. "Ranking individual habitat patches as connectivity providers: Integrating network analysis and patch removal experiments," Ecological Modelling, Elsevier, vol. 221(19), pages 2393-2405.
    11. Christian, Robert R. & Brinson, Mark M. & Dame, James K. & Johnson, Galen & Peterson, Charles H. & Baird, Daniel, 2009. "Ecological network analyses and their use for establishing reference domain in functional assessment of an estuary," Ecological Modelling, Elsevier, vol. 220(22), pages 3113-3122.
    12. Baird, Dan & Fath, Brian D. & Ulanowicz, Robert E. & Asmus, Harald & Asmus, Ragnhild, 2009. "On the consequences of aggregation and balancing of networks on system properties derived from ecological network analysis," Ecological Modelling, Elsevier, vol. 220(23), pages 3465-3471.
    13. Li, Y. & Yang, Z.F., 2011. "Quantifying the sustainability of water use systems: Calculating the balance between network efficiency and resilience," Ecological Modelling, Elsevier, vol. 222(10), pages 1771-1780.
    14. Li, Y. & Chen, B. & Yang, Z.F., 2009. "Ecological network analysis for water use systems—A case study of the Yellow River Basin," Ecological Modelling, Elsevier, vol. 220(22), pages 3163-3173.
    15. Xu, F. & Yang, Z.F. & Chen, B. & Zhao, Y.W., 2011. "Ecosystem health assessment of the plant-dominated Baiyangdian Lake based on eco-exergy," Ecological Modelling, Elsevier, vol. 222(1), pages 201-209.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yin, X.A. & Yang, Z.F., 2013. "A reservoir operating model for directing water supply to humans, wetlands, and cones of depression," Ecological Modelling, Elsevier, vol. 252(C), pages 114-120.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Borrett, Stuart R. & Sheble, Laura & Moody, James & Anway, Evan C., 2018. "Bibliometric review of ecological network analysis: 2010–2016," Ecological Modelling, Elsevier, vol. 382(C), pages 63-82.
    2. Borrett, S.R. & Freeze, M.A. & Salas, A.K., 2011. "Equivalence of the realized input and output oriented indirect effects metrics in Ecological Network Analysis," Ecological Modelling, Elsevier, vol. 222(13), pages 2142-2148.
    3. Yang, Zhifeng & Mao, Xufeng, 2011. "Wetland system network analysis for environmental flow allocations in the Baiyangdian Basin, China," Ecological Modelling, Elsevier, vol. 222(20), pages 3785-3794.
    4. Zhang, Yan & Zheng, Hongmei & Fath, Brian D., 2015. "Ecological network analysis of an industrial symbiosis system: A case study of the Shandong Lubei eco-industrial park," Ecological Modelling, Elsevier, vol. 306(C), pages 174-184.
    5. Zhang, Yan & Lu, Hanjing & Fath, Brian D. & Zheng, Hongmei, 2016. "Modelling urban nitrogen metabolic processes based on ecological network analysis: A case of study in Beijing, China," Ecological Modelling, Elsevier, vol. 337(C), pages 29-38.
    6. Whipple, Stuart J. & Patten, Bernard C. & Borrett, Stuart R., 2014. "Indirect effects and distributed control in ecosystems," Ecological Modelling, Elsevier, vol. 293(C), pages 161-186.
    7. Mao, Xufeng & Cui, Lijuan & Wang, Changhai, 2013. "Exploring the hydrologic relationships in a swamp-dominated watershed—A network-environ-analysis based approach," Ecological Modelling, Elsevier, vol. 252(C), pages 273-279.
    8. Tang, P.Z. & Liu, J.Z. & Lu, H.W. & Wang, Z. & He, L., 2017. "Information-based Network Environ Analysis for Ecological Risk Assessment of heavy metals in soils," Ecological Modelling, Elsevier, vol. 344(C), pages 17-28.
    9. Borrett, S.R. & Freeze, M.A., 2011. "Reconnecting environs to their environment," Ecological Modelling, Elsevier, vol. 222(14), pages 2393-2403.
    10. Zhang, Yan & Zheng, Hongmei & Fath, Brian D., 2014. "Analysis of the energy metabolism of urban socioeconomic sectors and the associated carbon footprints: Model development and a case study for Beijing," Energy Policy, Elsevier, vol. 73(C), pages 540-551.
    11. Mingqi Zhang & Meirong Su & Weiwei Lu & Chunhua Su, 2015. "An Assessment of the Security of China’s Natural Gas Supply System Using Two Network Models," Energies, MDPI, vol. 8(12), pages 1-16, December.
    12. Yang, Jin & Chen, Bin, 2016. "Energy–water nexus of wind power generation systems," Applied Energy, Elsevier, vol. 169(C), pages 1-13.
    13. Zhai, Mengyu & Huang, Guohe & Liu, Lirong & Zheng, Boyue & Guan, Yuru, 2020. "Inter-regional carbon flows embodied in electricity transmission: network simulation for energy-carbon nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    14. Fath, Brian D. & Scharler, Ursula M. & Baird, Dan, 2013. "Dependence of network metrics on model aggregation and throughflow calculations: Demonstration using the Sylt–Rømø Bight Ecosystem," Ecological Modelling, Elsevier, vol. 252(C), pages 214-219.
    15. Schramski, J.R. & Patten, B.C. & Kazanci, C. & Gattie, D.K. & Kellam, N.N., 2009. "The Reynolds transport theorem: Application to ecological compartment modeling and case study of ecosystem energetics," Ecological Modelling, Elsevier, vol. 220(22), pages 3225-3232.
    16. Hines, David E. & Borrett, Stuart R., 2014. "A comparison of network, neighborhood, and node levels of analyses in two models of nitrogen cycling in the Cape Fear River Estuary," Ecological Modelling, Elsevier, vol. 293(C), pages 210-220.
    17. Xufeng Mao & Donghai Yuan & Xiaoyan Wei & Qiong Chen & Chenling Yan & Liansheng He, 2015. "Network Analysis for a Better Water Use Configuration in the Baiyangdian Basin, China," Sustainability, MDPI, vol. 7(2), pages 1-12, February.
    18. Duan, Cuncun & Chen, Bin & Feng, Kuishuang & Liu, Zhu & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2018. "Interregional carbon flows of China," Applied Energy, Elsevier, vol. 227(C), pages 342-352.
    19. Zhang, Yan & Yang, Zhifeng & Yu, Xiangyi, 2009. "Ecological network and emergy analysis of urban metabolic systems: Model development, and a case study of four Chinese cities," Ecological Modelling, Elsevier, vol. 220(11), pages 1431-1442.
    20. Bata, Seth A. & Borrett, Stuart R. & Patten, Bernard C. & Whipple, Stuart J. & Schramski, John R. & Gattie, David K., 2007. "Equivalence of throughflow- and storage-based environs," Ecological Modelling, Elsevier, vol. 206(3), pages 400-406.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:222:y:2011:i:23:p:3811-3820. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.