IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v293y2014icp161-186.html
   My bibliography  Save this article

Indirect effects and distributed control in ecosystems

Author

Listed:
  • Whipple, Stuart J.
  • Patten, Bernard C.
  • Borrett, Stuart R.

Abstract

Compartmental, or “stock-and-flow”, models describe the storage and transfer of conservative energy or matter entering and leaving open systems. The storages are the standing “stocks”, and the intra-system and boundary transfers are transactional “flows”. Network environ analysis (NEA) provides network methods and perspectives for the quantitative analysis of compartment models. These emphasize the distinction between direct and indirect relationships between the compartments, and also with their environments. In NEA, each compartment in a system has an incoming network that brings energy or matter to it from the system’s boundary inputs, and an outgoing network that takes substance from it to boundary outputs. These networks are, respectively, input and output environs. Individual pathways in environs have an identity not unlike spaghetti in a bowl, each strand of which originates at some boundary input and terminates at some boundary output. All strands originating at the j’th input collectively comprise, no matter where they terminate, the j’th output environ; similarly, all strands terminating at the i’th output comprise, no matter where they originate, the i’th input environ. Thus, any substance freely mixing in the system as a whole runs in pathways consigned to one and only one output environ traced forward from its compartment of entry, and also one and only one input environ traced backward from its compartment of exit. The environs are partition elements – they decompose the interior stocks and flow according to their input origins and output destinations. Moreover, each environ’s dynamics and other systems and network properties are unique, and sum over all the environs to give the aggregate dynamics and properties of the whole. It is this composite, aggregate whole that empirical methods measure; empiricism unaided by theoretical analysis is blind to the environ pathways that actually compose the wholes.

Suggested Citation

  • Whipple, Stuart J. & Patten, Bernard C. & Borrett, Stuart R., 2014. "Indirect effects and distributed control in ecosystems," Ecological Modelling, Elsevier, vol. 293(C), pages 161-186.
  • Handle: RePEc:eee:ecomod:v:293:y:2014:i:c:p:161-186
    DOI: 10.1016/j.ecolmodel.2014.08.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380014004165
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2014.08.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tollner, E.W. & Schramski, J.R. & Kazanci, C. & Patten, B.C., 2009. "Implications of network particle tracking (NPT) for ecological model interpretation," Ecological Modelling, Elsevier, vol. 220(16), pages 1904-1912.
    2. Matamba, L. & Kazanci, C. & Schramski, J.R. & Blessing, M. & Alexander, P. & Patten, B.C., 2009. "Throughflow analysis: A stochastic approach," Ecological Modelling, Elsevier, vol. 220(22), pages 3174-3181.
    3. Bata, Seth A. & Borrett, Stuart R. & Patten, Bernard C. & Whipple, Stuart J. & Schramski, John R. & Gattie, David K., 2007. "Equivalence of throughflow- and storage-based environs," Ecological Modelling, Elsevier, vol. 206(3), pages 400-406.
    4. Schramski, J.R. & Gattie, D.K. & Patten, B.C. & Borrett, S.R. & Fath, B.D. & Whipple, S.J., 2007. "Indirect effects and distributed control in ecosystems: Distributed control in the environ networks of a seven-compartment model of nitrogen flow in the Neuse River Estuary, USA—Time series analysis," Ecological Modelling, Elsevier, vol. 206(1), pages 18-30.
    5. Borrett, S.R. & Freeze, M.A. & Salas, A.K., 2011. "Equivalence of the realized input and output oriented indirect effects metrics in Ecological Network Analysis," Ecological Modelling, Elsevier, vol. 222(13), pages 2142-2148.
    6. Borrett, S.R. & Salas, A.K., 2010. "Evidence for resource homogenization in 50 trophic ecosystem networks," Ecological Modelling, Elsevier, vol. 221(13), pages 1710-1716.
    7. Salas, Andria K. & Borrett, Stuart R., 2011. "Evidence for the dominance of indirect effects in 50 trophic ecosystem networks," Ecological Modelling, Elsevier, vol. 222(5), pages 1192-1204.
    8. Kazanci, C. & Matamba, L. & Tollner, E.W., 2009. "Cycling in ecosystems: An individual based approach," Ecological Modelling, Elsevier, vol. 220(21), pages 2908-2914.
    9. Borrett, S.R. & Freeze, M.A., 2011. "Reconnecting environs to their environment," Ecological Modelling, Elsevier, vol. 222(14), pages 2393-2403.
    10. Whipple, Stuart J. & Borrett, Stuart R. & Patten, Bernard C. & Gattie, David K. & Schramski, John R. & Bata, Seth A., 2007. "Indirect effects and distributed control in ecosystems: Comparative network environ analysis of a seven-compartment model of nitrogen flow in the Neuse River estuary, USA—Time series analysis," Ecological Modelling, Elsevier, vol. 206(1), pages 1-17.
    11. Christian, Robert R. & Brinson, Mark M. & Dame, James K. & Johnson, Galen & Peterson, Charles H. & Baird, Daniel, 2009. "Ecological network analyses and their use for establishing reference domain in functional assessment of an estuary," Ecological Modelling, Elsevier, vol. 220(22), pages 3113-3122.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Borrett, Stuart R. & Moody, James & Edelmann, Achim, 2014. "The rise of Network Ecology: Maps of the topic diversity and scientific collaboration," Ecological Modelling, Elsevier, vol. 293(C), pages 111-127.
    2. Small, Gaston E. & Sterner, Robert W. & Finlay, Jacques C., 2014. "An Ecological Network Analysis of nitrogen cycling in the Laurentian Great Lakes," Ecological Modelling, Elsevier, vol. 293(C), pages 150-160.
    3. Borrett, Stuart R. & Sheble, Laura & Moody, James & Anway, Evan C., 2018. "Bibliometric review of ecological network analysis: 2010–2016," Ecological Modelling, Elsevier, vol. 382(C), pages 63-82.
    4. Coskun, Huseyin, 2018. "Static Ecological System Measures," OSF Preprints g4xzt, Center for Open Science.
    5. Patten, Bernard C., 2015. "Link tracking: Quantifying network flows from qualitative node–link digraphs," Ecological Modelling, Elsevier, vol. 295(C), pages 47-58.
    6. Lu, Jingzhao & Lu, Hongwei & Wang, Weipeng & Feng, SanSan & Lei, Kaiwen, 2021. "Ecological risk assessment of heavy metal contamination of mining area soil based on land type changes: An information network environ analysis," Ecological Modelling, Elsevier, vol. 455(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Borrett, S.R. & Freeze, M.A. & Salas, A.K., 2011. "Equivalence of the realized input and output oriented indirect effects metrics in Ecological Network Analysis," Ecological Modelling, Elsevier, vol. 222(13), pages 2142-2148.
    2. Ma, Q. & Kazanci, C., 2013. "Analysis of indirect effects within ecosystem models using pathway-based methodology," Ecological Modelling, Elsevier, vol. 252(C), pages 238-245.
    3. Patten, Bernard C., 2016. "The cardinal hypotheses of Holoecology," Ecological Modelling, Elsevier, vol. 319(C), pages 63-111.
    4. Borrett, Stuart R. & Sheble, Laura & Moody, James & Anway, Evan C., 2018. "Bibliometric review of ecological network analysis: 2010–2016," Ecological Modelling, Elsevier, vol. 382(C), pages 63-82.
    5. Hines, David E. & Borrett, Stuart R., 2014. "A comparison of network, neighborhood, and node levels of analyses in two models of nitrogen cycling in the Cape Fear River Estuary," Ecological Modelling, Elsevier, vol. 293(C), pages 210-220.
    6. Mao, Xufeng & Yang, Zhifeng, 2011. "Functional assessment of interconnected aquatic ecosystems in the Baiyangdian Basin—An ecological-network-analysis based approach," Ecological Modelling, Elsevier, vol. 222(23), pages 3811-3820.
    7. Yang, Jin & Chen, Bin, 2016. "Energy–water nexus of wind power generation systems," Applied Energy, Elsevier, vol. 169(C), pages 1-13.
    8. Schramski, J.R. & Patten, B.C. & Kazanci, C. & Gattie, D.K. & Kellam, N.N., 2009. "The Reynolds transport theorem: Application to ecological compartment modeling and case study of ecosystem energetics," Ecological Modelling, Elsevier, vol. 220(22), pages 3225-3232.
    9. Borrett, S.R. & Freeze, M.A., 2011. "Reconnecting environs to their environment," Ecological Modelling, Elsevier, vol. 222(14), pages 2393-2403.
    10. Zhang, Yan & Zheng, Hongmei & Fath, Brian D., 2015. "Ecological network analysis of an industrial symbiosis system: A case study of the Shandong Lubei eco-industrial park," Ecological Modelling, Elsevier, vol. 306(C), pages 174-184.
    11. Zhang, Yan & Yang, Zhifeng & Yu, Xiangyi, 2009. "Ecological network and emergy analysis of urban metabolic systems: Model development, and a case study of four Chinese cities," Ecological Modelling, Elsevier, vol. 220(11), pages 1431-1442.
    12. Tuominen, Lindsey K. & Whipple, Stuart J. & Patten, Bernard C. & Karatas, Zekeriya Y. & Kazanci, Caner, 2014. "Contribution of throughflows to the ecological interpretation of integral network utility," Ecological Modelling, Elsevier, vol. 293(C), pages 187-201.
    13. Zhang, Yan & Lu, Hanjing & Fath, Brian D. & Zheng, Hongmei, 2016. "Modelling urban nitrogen metabolic processes based on ecological network analysis: A case of study in Beijing, China," Ecological Modelling, Elsevier, vol. 337(C), pages 29-38.
    14. Li, Y. & Chen, B. & Yang, Z.F., 2009. "Ecological network analysis for water use systems—A case study of the Yellow River Basin," Ecological Modelling, Elsevier, vol. 220(22), pages 3163-3173.
    15. Fath, Brian D., 2014. "Sustainable systems promote wholeness-extending transformations: The contributions of systems thinking," Ecological Modelling, Elsevier, vol. 293(C), pages 42-48.
    16. Rodríguez, Ricardo A. & Herrera, Ada Ma. & Riera, Rodrigo & Delgado, Juan D. & Quirós, Ángel & Perdomo, María E. & Santander, Jacobo & Miranda, Jezahel V. & Fernández-Rodríguez, María J. & Jiménez-Rod, 2015. "Thermostatistical distribution of a trophic energy proxy with analytical consequences for evolutionary ecology, species coexistence and the maximum entropy formalism," Ecological Modelling, Elsevier, vol. 296(C), pages 24-35.
    17. Tang, P.Z. & Liu, J.Z. & Lu, H.W. & Wang, Z. & He, L., 2017. "Information-based Network Environ Analysis for Ecological Risk Assessment of heavy metals in soils," Ecological Modelling, Elsevier, vol. 344(C), pages 17-28.
    18. Patten, Bernard C. & Straškraba, Milan & Jørgensen, Sven E., 2011. "Ecosystems emerging. 5: Constraints," Ecological Modelling, Elsevier, vol. 222(16), pages 2945-2972.
    19. Zhai, Mengyu & Huang, Guohe & Liu, Lirong & Zheng, Boyue & Guan, Yuru, 2020. "Inter-regional carbon flows embodied in electricity transmission: network simulation for energy-carbon nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    20. Fath, Brian D. & Scharler, Ursula M. & Baird, Dan, 2013. "Dependence of network metrics on model aggregation and throughflow calculations: Demonstration using the Sylt–Rømø Bight Ecosystem," Ecological Modelling, Elsevier, vol. 252(C), pages 214-219.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:293:y:2014:i:c:p:161-186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.