IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v250y2025ics0165176525001387.html
   My bibliography  Save this article

Overlap-weighted difference-in-differences: A simple way to overcome poor propensity score overlap

Author

Listed:
  • Kim, Bora
  • Lee, Myoung-jae

Abstract

Limited propensity score overlap in difference-in-differences (DID) can severely undermine reliable estimation of the average treatment effect on the treated (ATT), especially when extreme propensity scores dominate. Building on “overlap weighting”, we introduce a new DID estimand that assigns higher weights to units with their propensity scores close to 0.5, while down-weighting units with extreme propensity scores. Under a conditional parallel trends assumption, the estimand becomes an overlap-weighted ATT. The corresponding DID estimator is obtained by a simple regression of the residualized outcome change on the residualized treatment group indicator. Simulations demonstrate that the estimator remains stable in settings with limited propensity score overlap, outperforming standard approaches in both bias and variance.

Suggested Citation

  • Kim, Bora & Lee, Myoung-jae, 2025. "Overlap-weighted difference-in-differences: A simple way to overcome poor propensity score overlap," Economics Letters, Elsevier, vol. 250(C).
  • Handle: RePEc:eee:ecolet:v:250:y:2025:i:c:s0165176525001387
    DOI: 10.1016/j.econlet.2025.112301
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176525001387
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2025.112301?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2009. "Dealing with limited overlap in estimation of average treatment effects," Biometrika, Biometrika Trust, vol. 96(1), pages 187-199.
    2. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    3. Myoung-Jae Lee, 2018. "Simple least squares estimator for treatment effects using propensity score residuals," Biometrika, Biometrika Trust, vol. 105(1), pages 149-164.
    4. Bryan S. Graham & Cristine Campos De Xavier Pinto & Daniel Egel, 2012. "Inverse Probability Tilting for Moment Condition Models with Missing Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 79(3), pages 1053-1079.
    5. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
    6. Sant’Anna, Pedro H.C. & Zhao, Jun, 2020. "Doubly robust difference-in-differences estimators," Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
    7. Alberto Abadie, 2005. "Semiparametric Difference-in-Differences Estimators," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(1), pages 1-19.
    8. Paul Goldsmith-Pinkham & Peter Hull & Michal Kolesár, 2024. "Contamination Bias in Linear Regressions," American Economic Review, American Economic Association, vol. 114(12), pages 4015-4051, December.
    9. James Heckman & Hidehiko Ichimura & Jeffrey Smith & Petra Todd, 1998. "Characterizing Selection Bias Using Experimental Data," Econometrica, Econometric Society, vol. 66(5), pages 1017-1098, September.
    10. Callaway, Brantly & Sant’Anna, Pedro H.C., 2021. "Difference-in-Differences with multiple time periods," Journal of Econometrics, Elsevier, vol. 225(2), pages 200-230.
    11. Fan Li & Kari Lock Morgan & Alan M. Zaslavsky, 2018. "Balancing Covariates via Propensity Score Weighting," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 390-400, January.
    12. Lee, Myoung-jae & Han, Chirok, 2025. "Ordinary least squares and instrumental-variables estimators for any outcome and heterogeneity," Gospodarka Narodowa-The Polish Journal of Economics, Szkoła Główna Handlowa w Warszawie / SGH Warsaw School of Economics, vol. 2024(1), July.
    13. James J. Heckman & Hidehiko Ichimura & Petra E. Todd, 1997. "Matching As An Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Programme," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 605-654.
    14. Newey, Whitney K, 1990. "Efficient Instrumental Variables Estimation of Nonlinear Models," Econometrica, Econometric Society, vol. 58(4), pages 809-837, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sant’Anna, Pedro H.C. & Zhao, Jun, 2020. "Doubly robust difference-in-differences estimators," Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
    2. Christoph Breunig & Ruixuan Liu & Zhengfei Yu, 2024. "Semiparametric Bayesian Difference-in-Differences," Papers 2412.04605, arXiv.org, revised Jun 2025.
    3. Callaway, Brantly & Li, Tong, 2023. "Policy evaluation during a pandemic," Journal of Econometrics, Elsevier, vol. 236(1).
    4. Callaway, Brantly & Sant’Anna, Pedro H.C., 2021. "Difference-in-Differences with multiple time periods," Journal of Econometrics, Elsevier, vol. 225(2), pages 200-230.
    5. Huber, Martin, 2019. "An introduction to flexible methods for policy evaluation," FSES Working Papers 504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    6. Bahia, Kalvin & Castells, Pau & Cruz, Genaro & Masaki, Takaaki & Pedrós, Xavier & Pfutze, Tobias & Rodríguez-Castelán, Carlos & Winkler, Hernán, 2024. "The welfare effects of mobile broadband internet: Evidence from Nigeria," Journal of Development Economics, Elsevier, vol. 170(C).
    7. Chad D. Meyerhoefer & Muzhe Yang, 2011. "The Relationship between Food Assistance and Health: A Review of the Literature and Empirical Strategies for Identifying Program Effects," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 33(3), pages 304-344.
    8. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    9. Roth, Jonathan & Sant’Anna, Pedro H.C. & Bilinski, Alyssa & Poe, John, 2023. "What’s trending in difference-in-differences? A synthesis of the recent econometrics literature," Journal of Econometrics, Elsevier, vol. 235(2), pages 2218-2244.
    10. Prem, Mounu & Purroy, Miguel E. & Vargas, Juan F., 2025. "Landmines: The local effects of demining," Journal of Public Economics, Elsevier, vol. 247(C).
    11. Nora Bearth, 2024. "Beyond Baby Blues: The Child Penalty in Mental Health in Switzerland," Papers 2410.20861, arXiv.org, revised May 2025.
    12. Coulibaly, Yacouba, 2024. "Resource-backed loans and ecological efficiency of human development: Evidence from African countries," Ecological Economics, Elsevier, vol. 224(C).
    13. Tang, Shengfang & Huang, Zhilin, 2022. "Empirical likelihood confidence interval for difference-in-differences estimator with panel data," Economics Letters, Elsevier, vol. 216(C).
    14. Jung, Suhyun & Rogers, Martha, 2024. "Mobile phone adoption, deforestation, and agricultural land use in Uganda," World Development, Elsevier, vol. 179(C).
    15. Franziska Zimmert & Michael Zimmert, 2024. "Part‐time subsidies and maternal reemployment: Evidence from a difference‐in‐differences analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(6), pages 1149-1171, September.
    16. Jacob Dorn, 2025. "How Much Weak Overlap Can Doubly Robust T-Statistics Handle?," Papers 2504.13273, arXiv.org, revised Apr 2025.
    17. Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
    18. Julien Bergeot & Florence Jusot, 2024. "How did unmet care needs during the pandemic affect health outcomes of older European individuals?," Post-Print hal-04564156, HAL.
    19. Huber, Martin & Lechner, Michael & Wunsch, Conny, 2013. "The performance of estimators based on the propensity score," Journal of Econometrics, Elsevier, vol. 175(1), pages 1-21.
    20. Yixiao Sun & Haitian Xie & Yuhang Zhang, 2025. "Difference-in-Differences Meets Synthetic Control: Doubly Robust Identification and Estimation," Papers 2503.11375, arXiv.org.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:250:y:2025:i:c:s0165176525001387. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.