IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v192y2020ics0165176520301671.html
   My bibliography  Save this article

Smoothed LSDV estimation of functional-coefficient panel data models with two-way fixed effects

Author

Listed:
  • Halder, Shaymal C.
  • Malikov, Emir

Abstract

The existing semiparametric estimators for varying-coefficient fixed-effects models exclusively assume one-way fixed effects, typically in the dimension of cross-sectional units. However, more often than not applied researchers wish to control for both the individual and time fixed effects in their panel regressions, with the latter included to account for common unobservable factors correlated with regressors. While rather trivial in a linear model, controlling for time effects by explicitly including time-period dummies as additional regressors does not provide a straight-forward estimation procedure in the case of a semiparametric model. We provide an alternative by extending the Sun et al. (2009) smoothed least-squares dummy variable (LSDV) estimator to the case of a functional-coefficient model with two-way fixed effects whereby we allow for unobservable heterogeneity in both dimensions of the data: cross-section and time. Both fixed effects are concentrated out of the model via locally smoothed two-dimensional within transformation. Simulations show that the estimator performs well in finite samples. We also showcase its practical usefulness by revisiting the role of management as a factor of production.

Suggested Citation

  • Halder, Shaymal C. & Malikov, Emir, 2020. "Smoothed LSDV estimation of functional-coefficient panel data models with two-way fixed effects," Economics Letters, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:ecolet:v:192:y:2020:i:c:s0165176520301671
    DOI: 10.1016/j.econlet.2020.109239
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176520301671
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2020.109239?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qian, Junhui & Wang, Le, 2012. "Estimating semiparametric panel data models by marginal integration," Journal of Econometrics, Elsevier, vol. 167(2), pages 483-493.
    2. Nicholas Bloom & John Van Reenen, 2007. "Measuring and Explaining Management Practices Across Firms and Countries," The Quarterly Journal of Economics, Oxford University Press, vol. 122(4), pages 1351-1408.
    3. Malikov, Emir & Kumbhakar, Subal C. & Sun, Yiguo, 2016. "Varying coefficient panel data model in the presence of endogenous selectivity and fixed effects," Journal of Econometrics, Elsevier, vol. 190(2), pages 233-251.
    4. Bloom, Nicholas & Sadun, Raffaella & Van Reenen, John, 2016. "Management as a Technology," CEPR Discussion Papers 11312, C.E.P.R. Discussion Papers.
    5. Henderson, Daniel J. & Carroll, Raymond J. & Li, Qi, 2008. "Nonparametric estimation and testing of fixed effects panel data models," Journal of Econometrics, Elsevier, vol. 144(1), pages 257-275, May.
    6. Su, Liangjun & Ullah, Aman, 2006. "Profile likelihood estimation of partially linear panel data models with fixed effects," Economics Letters, Elsevier, vol. 92(1), pages 75-81, July.
    7. Lin, Zhongjian & Li, Qi & Sun, Yiguo, 2014. "A consistent nonparametric test of parametric regression functional form in fixed effects panel data models," Journal of Econometrics, Elsevier, vol. 178(P1), pages 167-179.
    8. Rodriguez-Poo, Juan M. & Soberón, Alexandra, 2015. "Nonparametric estimation of fixed effects panel data varying coefficient models," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 95-122.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christopher F. Parmeter & Jeffrey S. Racine, 2018. "Nonparametric Estimation and Inference for Panel Data Models," Department of Economics Working Papers 2018-02, McMaster University.
    2. Feng, Sanying & He, Wenqi & Li, Feng, 2020. "Model detection and estimation for varying coefficient panel data models with fixed effects," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    3. Sun, Yiguo & Malikov, Emir, 2018. "Estimation and inference in functional-coefficient spatial autoregressive panel data models with fixed effects," Journal of Econometrics, Elsevier, vol. 203(2), pages 359-378.
    4. Lee, Yoonseok & Mukherjee, Debasri & Ullah, Aman, 2019. "Nonparametric estimation of the marginal effect in fixed-effect panel data models," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 53-67.
    5. Su, Liangjun & Lu, Xun, 2013. "Nonparametric dynamic panel data models: Kernel estimation and specification testing," Journal of Econometrics, Elsevier, vol. 176(2), pages 112-133.
    6. Zongwu Cai & Linna Chen & Ying Fang, 2015. "Semiparametric Estimation of Partially Varying-Coefficient Dynamic Panel Data Models," Econometric Reviews, Taylor & Francis Journals, vol. 34(6-10), pages 695-719, December.
    7. Li, Cong & Liang, Zhongwen, 2015. "Asymptotics for nonparametric and semiparametric fixed effects panel models," Journal of Econometrics, Elsevier, vol. 185(2), pages 420-434.
    8. Peter Pütz & Thomas Kneib, 2018. "A penalized spline estimator for fixed effects panel data models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(2), pages 145-166, April.
    9. Aman Ullah & Tao Wang & Weixin Yao, 2020. "Modal Regression for Fixed Effects Panel Data," Working Papers 202102, University of California at Riverside, Department of Economics, revised Nov 2020.
    10. Zhou, Jianhua & Parmeter, Christopher F. & Kumbhakar, Subal C., 2020. "Nonparametric estimation of the determinants of inefficiency in the presence of firm heterogeneity," European Journal of Operational Research, Elsevier, vol. 286(3), pages 1142-1152.
    11. Huang, Bai & Lee, Tae-Hwy & Ullah, Aman, 2020. "Combined estimation of semiparametric panel data models," Econometrics and Statistics, Elsevier, vol. 15(C), pages 30-45.
    12. Nicholas Bloom & Christos Genakos & Raffaella Sadun & John Van Reenen, 2011. "Management Practices Across Firms and Countries," CEP Discussion Papers dp1109, Centre for Economic Performance, LSE.
    13. Philippe Aghion & Nicholas Bloom & Brian Lucking & Raffaella Sadun & John Van Reenen, 2021. "Turbulence, Firm Decentralization, and Growth in Bad Times," American Economic Journal: Applied Economics, American Economic Association, vol. 13(1), pages 133-169, January.
    14. Delis, Manthos D. & Tsionas, Mike G., 2018. "Measuring management practices," International Journal of Production Economics, Elsevier, vol. 199(C), pages 65-77.
    15. Lee, Jungyoon & Robinson, Peter M., 2015. "Panel nonparametric regression with fixed effects," Journal of Econometrics, Elsevier, vol. 188(2), pages 346-362.
    16. Gilbert CETTE & Jimmy LOPEZ & Jacques MAIRESSE & Giuseppe NICOLETTI, 2020. "Economic Adjustment during the Great Recession: The Role of Managerial Quality," Working Papers 2020-26, Center for Research in Economics and Statistics.
    17. Chu, Chi-Yang & Henderson, Daniel J. & Parmeter, Christopher F., 2017. "On discrete Epanechnikov kernel functions," Computational Statistics & Data Analysis, Elsevier, vol. 116(C), pages 79-105.
    18. Michael Vogt & Oliver Linton, 2015. "Classification of nonparametric regression functions in heterogeneous panels," CeMMAP working papers CWP06/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    19. Desiderio Romero-Jordán & Ismael Sanz-Labrador & José Félix Sanz-Sanz, 2020. "Is the corporation tax a barrier to productivity growth?," Small Business Economics, Springer, vol. 55(1), pages 23-38, June.
    20. Anna Valero, 2021. "Education and management practices," CEP Discussion Papers dp1767, Centre for Economic Performance, LSE.

    More about this item

    Keywords

    Fixed effect; Local linear; LSDV; Semiparametric; Smooth coefficient; Time effect;
    All these keywords.

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:192:y:2020:i:c:s0165176520301671. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/locate/ecolet .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.