IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v116y2012i1p96-98.html
   My bibliography  Save this article

Spatial electoral competition with a probabilistically favored candidate

Author

Listed:
  • Xefteris, Dimitrios

Abstract

This paper studies unidimensional electoral competition between two office-motivated candidates, where one of them enjoys a probabilistic and non-policy advantage over the other. We consider a finite number of voters who have single peaked preferences and whose ideal policies are not known to the candidates. Unlike the deterministic-advantage models we find that the Downsian pure strategy equilibrium is in this environment the unique Nash equilibrium of the game when the electorate is sufficiently large.

Suggested Citation

  • Xefteris, Dimitrios, 2012. "Spatial electoral competition with a probabilistically favored candidate," Economics Letters, Elsevier, vol. 116(1), pages 96-98.
  • Handle: RePEc:eee:ecolet:v:116:y:2012:i:1:p:96-98
    DOI: 10.1016/j.econlet.2012.01.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176512000389
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ansolabehere, Stephen & Snyder, James M, Jr, 2000. "Valence Politics and Equilibrium in Spatial Election Models," Public Choice, Springer, vol. 103(3-4), pages 327-336, June.
    2. Aragones, Enriqueta & Palfrey, Thomas R., 2002. "Mixed Equilibrium in a Downsian Model with a Favored Candidate," Journal of Economic Theory, Elsevier, vol. 103(1), pages 131-161, March.
    3. Hummel, Patrick, 2010. "On the nature of equilibria in a Downsian model with candidate valence," Games and Economic Behavior, Elsevier, vol. 70(2), pages 425-445, November.
    4. Gelman, Andrew & King, Gary, 1993. "Why Are American Presidential Election Campaign Polls So Variable When Votes Are So Predictable?," British Journal of Political Science, Cambridge University Press, vol. 23(04), pages 409-451, October.
    5. Ashworth, Scott & Bueno de Mesquita, Ethan, 2009. "Elections with platform and valence competition," Games and Economic Behavior, Elsevier, vol. 67(1), pages 191-216, September.
    6. Alexei Zakharov, 2009. "A model of candidate location with endogenous valence," Public Choice, Springer, vol. 138(3), pages 347-366, March.
    7. Aragonès, Enriqueta & Xefteris, Dimitrios, 2012. "Candidate quality in a Downsian model with a continuous policy space," Games and Economic Behavior, Elsevier, vol. 75(2), pages 464-480.
    8. Xefteris, Dimitrios, 2012. "Mixed strategy equilibrium in a Downsian model with a favored candidate: A comment," Journal of Economic Theory, Elsevier, vol. 147(1), pages 393-396.
    9. Roland Kirstein & Georg v. Wangenheim, 2010. "A Generalized Condorcet Jury Theorem with Two Independent Probabilities of Error," MAGKS Papers on Economics 201011, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aragonès, Enriqueta & Xefteris, Dimitrios, 2017. "Voters' private valuation of candidates' quality," Journal of Public Economics, Elsevier, vol. 156(C), pages 121-130.
    2. Xefteris, Dimitrios, 2013. "Equilibrium in a discrete Downsian model given a non-minimal valence advantage and linear loss functions," Mathematical Social Sciences, Elsevier, vol. 65(2), pages 150-153.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:116:y:2012:i:1:p:96-98. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.