IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v37y2001i2p303-311.html
   My bibliography  Save this article

Dynamics of agricultural groundwater extraction

Author

Listed:
  • Hellegers, Petra
  • Zilberman, David
  • van Ierland, Ekko

Abstract

Agricultural shallow groundwater extraction can result in desiccation of neighbouring nature reserves and degradation of groundwater quality in the Netherlands, whereas both externalities are often not considered when agricultural groundwater extraction patterns are being determined. A model is developed to study socially optimal agricultural shallow groundwater extraction patterns. It shows the importance of stock size to slow down changes in groundwater quality.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Hellegers, Petra & Zilberman, David & van Ierland, Ekko, 2001. "Dynamics of agricultural groundwater extraction," Ecological Economics, Elsevier, vol. 37(2), pages 303-311, May.
  • Handle: RePEc:eee:ecolec:v:37:y:2001:i:2:p:303-311
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921-8009(00)00288-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. David Zilberman & Neal Macdougall & Farhed Shah, 1994. "Changes In Water Allocation Mechanisms For California Agriculture," Contemporary Economic Policy, Western Economic Association International, vol. 12(1), pages 122-133, January.
    2. Margriet F. Caswell & David Zilberman, 1986. "The Effects of Well Depth and Land Quality on the Choice of Irrigation Technology," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 68(4), pages 798-811.
    3. Farhed A. Shah & David Zilberman & Ujjayant Chakravorty, 1995. "Technology Adoption in the Presence of an Exhaustible Resource: The Case of Groundwater Extraction," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 77(2), pages 291-299.
    4. Douglas M. Larson & Gloria E. Helfand & Brett W. House, 1996. "Second-Best Tax Policies to Reduce Nonpoint Source Pollution," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 78(4), pages 1108-1117.
    5. Wichelns, Dennis, 1999. "An economic model of waterlogging and salinization in arid regions," Ecological Economics, Elsevier, vol. 30(3), pages 475-491, September.
    6. Fleming, R. A. & Adams, R. M., 1997. "The Importance of Site-Specific Information in the Design of Policies to Control Pollution," Journal of Environmental Economics and Management, Elsevier, vol. 33(3), pages 347-358, July.
    7. Giannias, Dimitrios A. & Lekakis, Joseph N., 1997. "Policy analysis for an amicable, efficient and sustainable inter-country fresh water resource allocation," Ecological Economics, Elsevier, vol. 21(3), pages 231-242, June.
    8. Margriet Caswell & David Zilberman, 1985. "The Choices of Irrigation Technologies in California," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 67(2), pages 224-234.
    9. Provencher Bill & Burt Oscar, 1993. "The Externalities Associated with the Common Property Exploitation of Groundwater," Journal of Environmental Economics and Management, Elsevier, vol. 24(2), pages 139-158, March.
    10. Bystrom, Olof, 1998. "The nitrogen abatement cost in wetlands," Ecological Economics, Elsevier, vol. 26(3), pages 321-331, September.
    11. Carlson, Gerald A. & Zilberman, David & Miranowski, John, 1993. "Agricultural and Resource Economics," Staff General Research Papers Archive 11104, Iowa State University, Department of Economics.
    12. Jeroen C.J.M. van den Bergh (ed.), 1999. "Handbook of Environmental and Resource Economics," Books, Edward Elgar Publishing, number 801.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:ags:aare05:139314 is not listed on IDEAS
    2. Esteban, Encarna & Albiac, José, 2011. "Groundwater and ecosystems damages: Questioning the Gisser-Sánchez effect," Ecological Economics, Elsevier, vol. 70(11), pages 2062-2069, September.
    3. Shiferaw, Bekele & Reddy, V. Ratna & Wani, Suhas P., 2008. "Watershed externalities, shifting cropping patterns and groundwater depletion in Indian semi-arid villages: The effect of alternative water pricing policies," Ecological Economics, Elsevier, vol. 67(2), pages 327-340, September.
    4. Ami Reznik & Ariel Dinar & Francesc Hernández-Sancho, 2019. "Treated Wastewater Reuse: An Efficient and Sustainable Solution for Water Resource Scarcity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(4), pages 1647-1685, December.
    5. Athukorala, Wasantha & Wilson, Clevo & Managi, Shunsuke, 2017. "Social welfare losses from groundwater over-extraction for small-scale agriculture in Sri Lanka: Environmental concern for land use," Journal of Forest Economics, Elsevier, vol. 29(PA), pages 47-55.
    6. Woonghee Tim Huh & Chandra Kiran Krishnamurthy & Richard Weber, 2011. "Concavity and monotonicity properties in a groundwater management model," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(7), pages 670-675, October.
    7. Majah-Leah V. Ravago & James A. Roumasset, 2015. "Rethinking Baselines: An Efficiency-based Approash to Better REDD+ Governance," Working Papers 201515, University of Hawaii at Manoa, Department of Economics.
    8. Cheesman, Jeremy & Bennett, Jeffrey W., 2006. "An integrated approach for modelling the impacts of land and water resource use in the Dak Lak plateau, Viet Nam," 2006 Conference (50th), February 8-10, 2006, Sydney, Australia 174460, Australian Agricultural and Resource Economics Society.
    9. Lars Gårn Hansen & Frank Jensen & Eirik S. Amundsen, 2014. "Regulating Groundwater Use in Developing Countries: A Feasible Instrument for Public Intervention," Journal of Institutional and Theoretical Economics (JITE), Mohr Siebeck, Tübingen, vol. 170(2), pages 317-335, June.
    10. Chandra Kiran B. Krishnamurthy, 2017. "Optimal Management of Groundwater Under Uncertainty: A Unified Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(2), pages 351-377, June.
    11. Wasantha Athukorala & Clevo Wilson, 2012. "Groundwater overuse and farm-level technical inefficiency: evidence from Sri Lanka," School of Economics and Finance Discussion Papers and Working Papers Series 279, School of Economics and Finance, Queensland University of Technology.
    12. Shaheen, F.A. & Shiyani, R.L., 2006. "Energy Costs and Groundwater Withdrawals: Results from an Optimal Control Model for North Gujarat," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 62(1), pages 1-16.
    13. Kiran Krishnamurthy, Chandra, 2012. "Optimal Management of Groundwater under Uncertainty: A Unified Approach," CERE Working Papers 2012:19, CERE - the Center for Environmental and Resource Economics, revised 30 Jun 2014.
    14. Danling Chen & Wenbo Hu, 2023. "Temporal and Spatial Effects of Heavy Metal-Contaminated Cultivated Land Treatment on Agricultural Development Resilience," Land, MDPI, vol. 12(5), pages 1-16, April.
    15. Berbel, J. & Calatrava, J. & Garrido. A., 2007. "Water pricing and irrigation: a review of the European experience," IWMI Books, Reports H040611, International Water Management Institute.
    16. Chant, Lindsay & McDonald, Scott & Verschoor, Arjan, 2004. "The Role of the 1994-95 Coffee Boom in Uganda's Recovery," Conference papers 331235, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Phoebe Koundouri, 2004. "Current Issues in the Economics of Groundwater Resource Management," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 703-740, December.
    2. Alain Ayong Le Kama & Agnès Tomini, 2012. "Water Conservation versus Soil Salinity Control," EconomiX Working Papers 2012-8, University of Paris Nanterre, EconomiX.
    3. Athukorala, Wasantha & Wilson, Clevo & Managi, Shunsuke, 2017. "Social welfare losses from groundwater over-extraction for small-scale agriculture in Sri Lanka: Environmental concern for land use," Journal of Forest Economics, Elsevier, vol. 29(PA), pages 47-55.
    4. Nicolas E. Quintana Ashwell & Jeffrey M. Peterson, 2016. "The Impact of Irrigation Capital Subsidies on Common-Pool Groundwater Use and Depletion: Results for Western Kansas," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(03), pages 1-22, September.
    5. Brady, Mark, 2003. "The relative cost-efficiency of arable nitrogen management in Sweden," Ecological Economics, Elsevier, vol. 47(1), pages 53-70, November.
    6. Burness, H. Stuart & Brill, Thomas C., 2001. "The role for policy in common pool groundwater use," Resource and Energy Economics, Elsevier, vol. 23(1), pages 19-40, January.
    7. Lichtenberg, Erik, 2013. "Optimal Investment in Precision Irrigation Systems: A Dynamic Intraseasonal Approach," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 149920, Agricultural and Applied Economics Association.
    8. Chieko Umetsu & Ujjayant Chakravorty, 1998. "Water conveyance, return flows and technology choice," Agricultural Economics, International Association of Agricultural Economists, vol. 19(1-2), pages 181-191, September.
    9. Umetsu, Chieko, 2002. "The Optimal Dynamic Model of Conjunctive Water Use," Japanese Journal of Agricultural Economics (formerly Japanese Journal of Rural Economics), Agricultural Economics Society of Japan (AESJ), vol. 4.
    10. Lichtenberg, Erik, 2002. "Agriculture and the environment," Handbook of Agricultural Economics, in: B. L. Gardner & G. C. Rausser (ed.), Handbook of Agricultural Economics, edition 1, volume 2, chapter 23, pages 1249-1313, Elsevier.
    11. Alain Ayong Le Kama & Agnès Tomini, 2012. "Water Conservation versus Soil Salinity Control," Working Papers hal-04141151, HAL.
    12. Carlos A. Ulibarri & Harry S. Seely & David B. Willis, 1998. "Farm Profitability And Burec Water Subsidies: An Lp Look At A Region," Contemporary Economic Policy, Western Economic Association International, vol. 16(4), pages 442-451, October.
    13. Qiu, Zeyuan & Prato, Anthony A., 1999. "Accounting For Spatial Characteristics Of Watersheds In Evaluating Water Pollution Abatement Policies," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 31(1), pages 1-15, April.
    14. Uri Shani & Yacov Tsur & Amos Zemel & David Zilberman, 2009. "Irrigation production functions with water‐capital substitution," Agricultural Economics, International Association of Agricultural Economists, vol. 40(1), pages 55-66, January.
    15. Linda Steinhübel & Johannes Wegmann & Oliver Mußhoff, 2020. "Digging deep and running dry—the adoption of borewell technology in the face of climate change and urbanization," Agricultural Economics, International Association of Agricultural Economists, vol. 51(5), pages 685-706, September.
    16. Xie, Yang & Zilberman, David, 2014. "The Economics of Water Project Capacities and Conservation Technologies," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 169820, Agricultural and Applied Economics Association.
    17. Wasantha Athukorala & Clevo Wilson, 2012. "Groundwater overuse and farm-level technical inefficiency: evidence from Sri Lanka," School of Economics and Finance Discussion Papers and Working Papers Series 279, School of Economics and Finance, Queensland University of Technology.
    18. Taylor, Rebecca & Zilberman, David, 2015. "The Diffusion of Process Innovation: The Case of Drip Irrigation in California," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205320, Agricultural and Applied Economics Association.
    19. Xie, Yang & Zilberman, David, 2015. "Water Storage Capacities versus Water Use Efficiency: Substitutes or Complements?," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205439, Agricultural and Applied Economics Association.
    20. George Frisvold & Charles Sanchez & Noel Gollehon & Sharon B. Megdal & Paul Brown, 2018. "Evaluating Gravity-Flow Irrigation with Lessons from Yuma, Arizona, USA," Sustainability, MDPI, vol. 10(5), pages 1-27, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:37:y:2001:i:2:p:303-311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.