IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v215y2024ics0921800923002562.html
   My bibliography  Save this article

Assessing global agri-food system exceedance of national cropland limits for linking responsible consumption and production under SDG 12

Author

Listed:
  • Shaikh, M. Abdullah
  • Hadjikakou, Michalis
  • Geyik, Ozge
  • Bryan, Brett A.

Abstract

Sustainable Development Goal (SDG) 12 requires countries to achieve responsible consumption and production patterns without exceeding safe environmental limits for natural resource use. This is particularly relevant to the global agri-food system, a major contributor to the exceedance of environmental limits such as cropland (a major component of the land-system change planetary boundary). However, little is known about how virtual cropland flows embedded in agri-food commodities jointly impact national consumption- and production-based environmental limits for cropland use in the context of responsible agri-food consumption and production. Using a multi-regional input-output model and cropland limits of agri-food consumption and production, we identified specific countries and commodity supply chains that contribute to the exceedance of production-based cropland limits of producer countries (both domestic and via trade), irrespective of whether their own consumption-based cropland limits are exceeded. For example, 86% of China's consumption-based cropland footprint originated from regions that exceeded their production-based cropland limits, even though China's per capita consumption footprint is within safe fair-share limits. This occurred mainly due to the consumption of domestically produced and imported commodities such as oilseeds, cereals, and fruit and vegetables. In addition, we identified patterns in international trade relationships that could inform national-level responsible agri-food consumption/production interventions across the global supply chain, thereby contributing to SDG 12. More stringent regulations and improved policies are required to reduce the exceedance of consumption-based and production-based environmental limits and avoid exceeding the global land-system change planetary boundary.

Suggested Citation

  • Shaikh, M. Abdullah & Hadjikakou, Michalis & Geyik, Ozge & Bryan, Brett A., 2024. "Assessing global agri-food system exceedance of national cropland limits for linking responsible consumption and production under SDG 12," Ecological Economics, Elsevier, vol. 215(C).
  • Handle: RePEc:eee:ecolec:v:215:y:2024:i:c:s0921800923002562
    DOI: 10.1016/j.ecolecon.2023.107993
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921800923002562
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolecon.2023.107993?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kastner, Thomas & Kastner, Michael & Nonhebel, Sanderine, 2011. "Tracing distant environmental impacts of agricultural products from a consumer perspective," Ecological Economics, Elsevier, vol. 70(6), pages 1032-1040, April.
    2. Brenna Ellison & Mary K Muth & Elise Golan, 2019. "Opportunities and Challenges in Conducting Economic Research on Food Loss and Waste," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 41(1), pages 1-19, March.
    3. Johan Rockström & Will Steffen & Kevin Noone & Åsa Persson & F. Stuart Chapin & Eric F. Lambin & Timothy M. Lenton & Marten Scheffer & Carl Folke & Hans Joachim Schellnhuber & Björn Nykvist & Cynthia , 2009. "A safe operating space for humanity," Nature, Nature, vol. 461(7263), pages 472-475, September.
    4. Nilsson, Måns & Persson, Åsa, 2012. "Reprint of “Can Earth system interactions be governed? Governance functions for linking climate change mitigation with land use, freshwater and biodiversity protection”," Ecological Economics, Elsevier, vol. 81(C), pages 10-20.
    5. Nilsson, Måns & Persson, Åsa, 2012. "Can Earth system interactions be governed? Governance functions for linking climate change mitigation with land use, freshwater and biodiversity protection," Ecological Economics, Elsevier, vol. 75(C), pages 61-71.
    6. United Nations UN, 2015. "Transforming our World: the 2030 Agenda for Sustainable Development," Working Papers id:7559, eSocialSciences.
    7. Robinson, Sherman & Mason d'Croz, Daniel & Islam, Shahnila & Sulser, Timothy B. & Robertson, Richard D. & Zhu, Tingju & Gueneau, Arthur & Pitois, Gauthier & Rosegrant, Mark W., 2015. "The International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT): Model description for version 3:," IFPRI discussion papers 1483, International Food Policy Research Institute (IFPRI).
    8. Florian Zabel & Ruth Delzeit & Julia M. Schneider & Ralf Seppelt & Wolfram Mauser & Tomáš Václavík, 2019. "Global impacts of future cropland expansion and intensification on agricultural markets and biodiversity," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    9. Konstantin Stadler & Richard Wood & Tatyana Bulavskaya & Carl†Johan Södersten & Moana Simas & Sarah Schmidt & Arkaitz Usubiaga & José Acosta†Fernández & Jeroen Kuenen & Martin Bruckner & Stefan, 2018. "EXIOBASE 3: Developing a Time Series of Detailed Environmentally Extended Multi†Regional Input†Output Tables," Journal of Industrial Ecology, Yale University, vol. 22(3), pages 502-515, June.
    10. Arkaitz Usubiaga-Liaño & Georgina M. Mace & Paul Ekins, 2019. "Limits to agricultural land for retaining acceptable levels of local biodiversity," Nature Sustainability, Nature, vol. 2(6), pages 491-498, June.
    11. Wiedmann, Thomas & Wilting, Harry C. & Lenzen, Manfred & Lutter, Stephan & Palm, Viveka, 2011. "Quo Vadis MRIO? Methodological, data and institutional requirements for multi-region input-output analysis," Ecological Economics, Elsevier, vol. 70(11), pages 1937-1945, September.
    12. Christian Folberth & Nikolay Khabarov & Juraj Balkovič & Rastislav Skalský & Piero Visconti & Philippe Ciais & Ivan A. Janssens & Josep Peñuelas & Michael Obersteiner, 2020. "The global cropland-sparing potential of high-yield farming," Nature Sustainability, Nature, vol. 3(4), pages 281-289, April.
    13. Zeweld, Woldegebrial & Van Huylenbroeck, Guido & Tesfay, Girmay & Azadi, Hossein & Speelman, Stijn, 2020. "Sustainable agricultural practices, environmental risk mitigation and livelihood improvements: Empirical evidence from Northern Ethiopia," Land Use Policy, Elsevier, vol. 95(C).
    14. Jevan Cherniwchan & Brian R. Copeland & M. Scott Taylor, 2017. "Trade and the Environment: New Methods, Measurements, and Results," Annual Review of Economics, Annual Reviews, vol. 9(1), pages 59-85, September.
    15. Fang, Kai & Heijungs, Reinout & De Snoo, Geert R., 2015. "Understanding the complementary linkages between environmental footprints and planetary boundaries in a footprint–boundary environmental sustainability assessment framework," Ecological Economics, Elsevier, vol. 114(C), pages 218-226.
    16. Tramberend, Sylvia & Fischer, Günther & Bruckner, Martin & van Velthuizen, Harrij, 2019. "Our Common Cropland: Quantifying Global Agricultural Land Use from a Consumption Perspective," Ecological Economics, Elsevier, vol. 157(C), pages 332-341.
    17. Hertel, Thomas W., 2015. "The Challenges of Sustainably Feeding a Growing Planet," 2015 Conference (59th), February 10-13, 2015, Rotorua, New Zealand 202525, Australian Agricultural and Resource Economics Society.
    18. Dieter Gerten & Vera Heck & Jonas Jägermeyr & Benjamin Leon Bodirsky & Ingo Fetzer & Mika Jalava & Matti Kummu & Wolfgang Lucht & Johan Rockström & Sibyll Schaphoff & Hans Joachim Schellnhuber, 2020. "Feeding ten billion people is possible within four terrestrial planetary boundaries," Nature Sustainability, Nature, vol. 3(3), pages 200-208, March.
    19. Peters, Glen P., 2008. "From production-based to consumption-based national emission inventories," Ecological Economics, Elsevier, vol. 65(1), pages 13-23, March.
    20. Kissinger, Meidad & Rees, William E., 2010. "An interregional ecological approach for modelling sustainability in a globalizing world—Reviewing existing approaches and emerging directions," Ecological Modelling, Elsevier, vol. 221(21), pages 2615-2623.
    21. Steven J. Lade & Will Steffen & Wim Vries & Stephen R. Carpenter & Jonathan F. Donges & Dieter Gerten & Holger Hoff & Tim Newbold & Katherine Richardson & Johan Rockström, 2020. "Human impacts on planetary boundaries amplified by Earth system interactions," Nature Sustainability, Nature, vol. 3(2), pages 119-128, February.
    22. Renzaho, Andre M.N. & Kamara, Joseph K. & Toole, Michael, 2017. "Biofuel production and its impact on food security in low and middle income countries: Implications for the post-2015 sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 503-516.
    23. Daniel W. O’Neill & Andrew L. Fanning & William F. Lamb & Julia K. Steinberger, 2018. "A good life for all within planetary boundaries," Nature Sustainability, Nature, vol. 1(2), pages 88-95, February.
    24. Nathaniel D. Mueller & James S. Gerber & Matt Johnston & Deepak K. Ray & Navin Ramankutty & Jonathan A. Foley, 2012. "Closing yield gaps through nutrient and water management," Nature, Nature, vol. 490(7419), pages 254-257, October.
    25. Marco Springmann & Michael Clark & Daniel Mason-D’Croz & Keith Wiebe & Benjamin Leon Bodirsky & Luis Lassaletta & Wim Vries & Sonja J. Vermeulen & Mario Herrero & Kimberly M. Carlson & Malin Jonell & , 2018. "Options for keeping the food system within environmental limits," Nature, Nature, vol. 562(7728), pages 519-525, October.
    26. Nelson Villoria & Rachael Garrett & Florian Gollnow & Kimberly Carlson, 2022. "Leakage does not fully offset soy supply-chain efforts to reduce deforestation in Brazil," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuemei Bai & Syezlin Hasan & Lauren Seaby Andersen & Anders Bjørn & Şiir Kilkiş & Daniel Ospina & Jianguo Liu & Sarah E. Cornell & Oscar Sabag Muñoz & Ariane Bremond & Beatrice Crona & Fabrice DeClerc, 2024. "Translating Earth system boundaries for cities and businesses," Nature Sustainability, Nature, vol. 7(2), pages 108-119, February.
    2. de Boer, Bertram F. & Rodrigues, João F.D. & Tukker, Arnold, 2019. "Modeling reductions in the environmental footprints embodied in European Union's imports through source shifting," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
    3. Fanzo, Jessica & Haddad, Lawrence & Schneider, Kate R. & Béné, Christophe & Covic, Namukolo M. & Guarin, Alejandro & Herforth, Anna W. & Herrero, Mario & Sumaila, U. Rashid & Aburto, Nancy J. & Amuyun, 2021. "Viewpoint: Rigorous monitoring is necessary to guide food system transformation in the countdown to the 2030 global goals," Food Policy, Elsevier, vol. 104(C).
    4. Rostami-Tabar, Bahman & Ali, Mohammad M. & Hong, Tao & Hyndman, Rob J. & Porter, Michael D. & Syntetos, Aris, 2022. "Forecasting for social good," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1245-1257.
    5. Hametner, Markus, 2022. "Economics without ecology: How the SDGs fail to align socioeconomic development with environmental sustainability," Ecological Economics, Elsevier, vol. 199(C).
    6. Gebara, C.H. & Laurent, A., 2023. "National SDG-7 performance assessment to support achieving sustainable energy for all within planetary limits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    7. Ethan Gordon & Federico Davila & Chris Riedy, 2022. "Transforming landscapes and mindscapes through regenerative agriculture," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 39(2), pages 809-826, June.
    8. Virág, Doris & Wiedenhofer, Dominik & Baumgart, André & Matej, Sarah & Krausmann, Fridolin & Min, Jihoon & Rao, Narasimha D. & Haberl, Helmut, 2022. "How much infrastructure is required to support decent mobility for all? An exploratory assessment," Ecological Economics, Elsevier, vol. 200(C).
    9. Kristin Linnerud & Erling Holden & Morten Simonsen, 2021. "Closing the sustainable development gap: A global study of goal interactions," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(4), pages 738-753, July.
    10. Savona, Maria & Ciarli, Tommaso, 2019. "Structural Changes and Sustainability. A Selected Review of the Empirical Evidence," Ecological Economics, Elsevier, vol. 159(C), pages 244-260.
    11. Aneta Parsonsova & Ivo Machar, 2021. "National Limits of Sustainability: The Czech Republic’s CO 2 Emissions in the Perspective of Planetary Boundaries," Sustainability, MDPI, vol. 13(4), pages 1-16, February.
    12. Galaz, Victor & Biermann, Frank & Folke, Carl & Nilsson, Måns & Olsson, Per, 2012. "Global environmental governance and planetary boundaries: An introduction," Ecological Economics, Elsevier, vol. 81(C), pages 1-3.
    13. Mary Ollenburger & Page Kyle & Xin Zhang, 2022. "Uncertainties in estimating global potential yields and their impacts for long-term modeling," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(5), pages 1177-1190, October.
    14. Vincent Egenolf & Stefan Bringezu, 2019. "Conceptualization of an Indicator System for Assessing the Sustainability of the Bioeconomy," Sustainability, MDPI, vol. 11(2), pages 1-20, January.
    15. Stefano Di Bucchianico & Federica Cappelli, 2021. "Exploring the theoretical link between profitability and luxury emissions," Working Papers PKWP2114, Post Keynesian Economics Society (PKES).
    16. Syrovátka, Miroslav, 2020. "On sustainability interpretations of the Ecological Footprint," Ecological Economics, Elsevier, vol. 169(C).
    17. Suárez-Eiroa, Brais & Fernández, Emilio & Soto-Oñate, David & Ovejero-Campos, Aida & Urbieta, Pablo & Méndez, Gonzalo, 2022. "A framework to allocate responsibilities of the global environmental concerns: A case study in Spain involving regions, municipalities, productive sectors, industrial parks, and companies," Ecological Economics, Elsevier, vol. 192(C).
    18. Banie Naser Outchiri & Jie He, 2020. "Technical gap, trade partners and product mix evolution: how trading with China affects global CO2 emissions," Cahiers de recherche 20-07, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
    19. Tramberend, Sylvia & Fischer, Günther & Bruckner, Martin & van Velthuizen, Harrij, 2019. "Our Common Cropland: Quantifying Global Agricultural Land Use from a Consumption Perspective," Ecological Economics, Elsevier, vol. 157(C), pages 332-341.
    20. Bruckner, Martin & Fischer, Günther & Tramberend, Sylvia & Giljum, Stefan, 2015. "Measuring telecouplings in the global land system: A review and comparative evaluation of land footprint accounting methods," Ecological Economics, Elsevier, vol. 114(C), pages 11-21.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:215:y:2024:i:c:s0921800923002562. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.