Sequential Monte Carlo for Bayesian sequentially designed experiments for discrete data
Author
Abstract
Suggested Citation
DOI: 10.1016/j.csda.2012.05.014
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- C. C. Drovandi & A. N. Pettitt, 2011. "Estimation of Parameters for Macroparasite Population Evolution Using Approximate Bayesian Computation," Biometrics, The International Biometric Society, vol. 67(1), pages 225-233, March.
- Pierre Del Moral & Arnaud Doucet & Ajay Jasra, 2006. "Sequential Monte Carlo samplers," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 411-436, June.
- Björn Bornkamp & Katja Ickstadt, 2009. "Bayesian Nonparametric Estimation of Continuous Monotone Functions with Applications to Dose–Response Analysis," Biometrics, The International Biometric Society, vol. 65(1), pages 198-205, March.
- Mauro Gasparini & Jeffrey Eisele, 2000. "A Curve-Free Method for Phase I Clinical Trials," Biometrics, The International Biometric Society, vol. 56(2), pages 609-615, June.
- N. Friel & A. N. Pettitt, 2008. "Marginal likelihood estimation via power posteriors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(3), pages 589-607, July.
- Nadine Houede & Peter F. Thall & Hoang Nguyen & Xavier Paoletti & Andrew Kramar, 2010. "Utility-Based Optimization of Combination Therapy Using Ordinal Toxicity and Efficacy in Phase I/II Trials," Biometrics, The International Biometric Society, vol. 66(2), pages 532-540, June.
- Saurabh Mukhopadhyay, 2000. "Bayesian Nonparametric Inference on the Dose Level with Specified Response Rate," Biometrics, The International Biometric Society, vol. 56(1), pages 220-226, March.
- Stefanie Biedermann & David C. Woods, 2011. "Optimal designs for generalized non‐linear models with application to second‐harmonic generation experiments," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 60(2), pages 281-299, March.
- Nicolas Chopin, 2002.
"A sequential particle filter method for static models,"
Biometrika, Biometrika Trust, vol. 89(3), pages 539-552, August.
- Nicolas Chopin, 2000. "A Sequential Particle Filter Method for Static Models," Working Papers 2000-45, Center for Research in Economics and Statistics.
- Guosheng Yin & Yisheng Li & Yuan Ji, 2006. "Bayesian Dose-Finding in Phase I/II Clinical Trials Using Toxicity and Efficacy Odds Ratios," Biometrics, The International Biometric Society, vol. 62(3), pages 777-787, September.
- Dror, Hovav A. & Steinberg, David M., 2008. "Sequential Experimental Designs for Generalized Linear Models," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 288-298, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ryan, Elizabeth G. & Drovandi, Christopher C. & Thompson, M. Helen & Pettitt, Anthony N., 2014. "Towards Bayesian experimental design for nonlinear models that require a large number of sampling times," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 45-60.
- Abebe, Haftom T. & Tan, Frans E.S. & Van Breukelen, Gerard J.P. & Berger, Martijn P.F., 2014. "Bayesian D-optimal designs for the two parameter logistic mixed effects model," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1066-1076.
- McGree, J.M., 2017. "Developments of the total entropy utility function for the dual purpose of model discrimination and parameter estimation in Bayesian design," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 207-225.
- S. G. J. Senarathne & C. C. Drovandi & J. M. McGree, 2020. "Bayesian sequential design for Copula models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 454-478, June.
- Azriel, David, 2014. "Optimal sequential designs in phase I studies," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 288-297.
- Jacopo Paglia & Jo Eidsvik & Juha Karvanen, 2022. "Efficient spatial designs using Hausdorff distances and Bayesian optimization," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 1060-1084, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- McGree, J.M., 2017. "Developments of the total entropy utility function for the dual purpose of model discrimination and parameter estimation in Bayesian design," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 207-225.
- Hai‐Dang Dau & Nicolas Chopin, 2022. "Waste‐free sequential Monte Carlo," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(1), pages 114-148, February.
- Peter F. Thall & Hoang Q. Nguyen & Ralph G. Zinner, 2017. "Parametric dose standardization for optimizing two-agent combinations in a phase I–II trial with ordinal outcomes," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(1), pages 201-224, January.
- Ying Yuan & Guosheng Yin, 2009. "Bayesian dose finding by jointly modelling toxicity and efficacy as time‐to‐event outcomes," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(5), pages 719-736, December.
- Mathias Drton & Martyn Plummer, 2017. "A Bayesian information criterion for singular models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 323-380, March.
- Drovandi, Christopher C. & Pettitt, Anthony N., 2011. "Likelihood-free Bayesian estimation of multivariate quantile distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2541-2556, September.
- C. C. Drovandi & A. N. Pettitt, 2011. "Estimation of Parameters for Macroparasite Population Evolution Using Approximate Bayesian Computation," Biometrics, The International Biometric Society, vol. 67(1), pages 225-233, March.
- Xing Ju Lee & Christopher C. Drovandi & Anthony N. Pettitt, 2015. "Model choice problems using approximate Bayesian computation with applications to pathogen transmission data sets," Biometrics, The International Biometric Society, vol. 71(1), pages 198-207, March.
- Arnaud Dufays, 2016.
"Evolutionary Sequential Monte Carlo Samplers for Change-Point Models,"
Econometrics, MDPI, vol. 4(1), pages 1-33, March.
- Arnaud Dufays, 2015. "Evolutionary Sequential Monte Carlo Samplers for Change-point Models," Cahiers de recherche 1518, CIRPEE.
- Arnaud Dufays, 2015. "Evolutionary Sequential Monte Carlo Samplers for Change-point Models," Cahiers de recherche 1508, Centre de recherche sur les risques, les enjeux économiques, et les politiques publiques.
- Jeong Eun Lee & Christian Robert, 2013. "Imortance Sampling Schemes for Evidence Approximation in Mixture Models," Working Papers 2013-42, Center for Research in Economics and Statistics.
- Axel Finke & Adam Johansen & Dario Spanò, 2014. "Static-parameter estimation in piecewise deterministic processes using particle Gibbs samplers," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(3), pages 577-609, June.
- James Martin & Ajay Jasra & Emma McCoy, 2013. "Inference for a class of partially observed point process models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(3), pages 413-437, June.
- Guosheng Yin & Yisheng Li & Yuan Ji, 2006. "Bayesian Dose-Finding in Phase I/II Clinical Trials Using Toxicity and Efficacy Odds Ratios," Biometrics, The International Biometric Society, vol. 62(3), pages 777-787, September.
- Fulop, Andras & Li, Junye, 2013. "Efficient learning via simulation: A marginalized resample-move approach," Journal of Econometrics, Elsevier, vol. 176(2), pages 146-161.
- Warne, David J. & Baker, Ruth E. & Simpson, Matthew J., 2018. "Multilevel rejection sampling for approximate Bayesian computation," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 71-86.
- Zhang, Jinyu & Zhang, Qiaosen & Li, Yong & Wang, Qianchao, 2023. "Sequential Bayesian inference for agent-based models with application to the Chinese business cycle," Economic Modelling, Elsevier, vol. 126(C).
- Edward Herbst & Frank Schorfheide, 2014.
"Sequential Monte Carlo Sampling For Dsge Models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(7), pages 1073-1098, November.
- Edward P. Herbst & Frank Schorfheide, 2012. "Sequential Monte Carlo sampling for DSGE models," Working Papers 12-27, Federal Reserve Bank of Philadelphia.
- Edward P. Herbst & Frank Schorfheide, 2013. "Sequential Monte Carlo sampling for DSGE models," Finance and Economics Discussion Series 2013-43, Board of Governors of the Federal Reserve System (U.S.).
- Edward P. Herbst & Frank Schorfheide, 2013. "Sequential Monte Carlo Sampling for DSGE Models," NBER Working Papers 19152, National Bureau of Economic Research, Inc.
- repec:bla:istatr:v:83:y:2015:i:3:p:405-435 is not listed on IDEAS
- Xiaohong Chen & Timothy M. Christensen & Elie Tamer, 2018.
"Monte Carlo Confidence Sets for Identified Sets,"
Econometrica, Econometric Society, vol. 86(6), pages 1965-2018, November.
- Xiaohong Chen & Timothy Christensen & Elie Tamer, 2016. "Monte Carlo Confidence sets for Identified Sets," Cowles Foundation Discussion Papers 2037R2, Cowles Foundation for Research in Economics, Yale University, revised Sep 2017.
- Xiaohong Chen & Timothy Christensen & Elie Tamer, 2016. "Monte Carlo Confidence Sets for Identified Sets," Papers 1605.00499, arXiv.org, revised Sep 2017.
- Xiaohong Chen & Timothy M. Christensen & Elie Tamer, 2017. "Monte Carlo confidence sets for identified sets," CeMMAP working papers CWP43/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Arnaud Dufays, 2014. "On the conjugacy of off-line and on-line Sequential Monte Carlo Samplers," Working Paper Research 263, National Bank of Belgium.
- Ettmeier, Stephanie & Kriwoluzky, Alexander, 2024.
"Active or passive? Revisiting the role of fiscal policy during high inflation,"
European Economic Review, Elsevier, vol. 170(C).
- Stephanie Ettmeier & Alexander Kriwoluzky, 2024. "Active or Passive? Revisiting the Role of Fiscal Policy During High Inflation," CRC TR 224 Discussion Paper Series crctr224_2024_565, University of Bonn and University of Mannheim, Germany.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:57:y:2013:i:1:p:320-335. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/eee/csdana/v57y2013i1p320-335.html