IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Likelihood-free Bayesian estimation of multivariate quantile distributions

  • Drovandi, Christopher C.
  • Pettitt, Anthony N.
Registered author(s):

    In this paper, we present new multivariate quantile distributions and utilise likelihood-free Bayesian algorithms for inferring the parameters. In particular, we apply a sequential Monte Carlo (SMC) algorithm that is adaptive in nature and requires very little tuning compared with other approximate Bayesian computation algorithms. Furthermore, we present a framework for the development of multivariate quantile distributions based on a copula. We consider bivariate and time series extensions of the g-and-k distribution under this framework, and develop an efficient component-wise updating scheme free of likelihood functions to be used within the SMC algorithm. In addition, we trial the set of octiles as summary statistics as well as functions of these that form robust measures of location, scale, skewness and kurtosis. We show that these modifications lead to reasonably precise inferences that are more closely comparable to computationally intensive likelihood-based inference. We apply the quantile distributions and algorithms to simulated data and an example involving daily exchange rate returns.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947311001125
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Computational Statistics & Data Analysis.

    Volume (Year): 55 (2011)
    Issue (Month): 9 (September)
    Pages: 2541-2556

    as
    in new window

    Handle: RePEc:eee:csdana:v:55:y:2011:i:9:p:2541-2556
    Contact details of provider: Web page: http://www.elsevier.com/locate/csda

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Christopher C. Drovandi & Anthony N. Pettitt & Malcolm J. Faddy, 2011. "Approximate Bayesian computation using indirect inference," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 60(3), pages 317-337, 05.
    2. Knut Heggland & Arnoldo Frigessi, 2004. "Estimating functions in indirect inference," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(2), pages 447-462.
    3. J. M�ller & A. N. Pettitt & R. Reeves & K. K. Berthelsen, 2006. "An efficient Markov chain Monte Carlo method for distributions with intractable normalising constants," Biometrika, Biometrika Trust, vol. 93(2), pages 451-458, June.
    4. Pierre Del Moral & Arnaud Doucet & Ajay Jasra, 2006. "Sequential Monte Carlo samplers," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 411-436.
    5. Badrinath, S G & Chatterjee, Sangit, 1988. "On Measuring Skewness and Elongation in Common Stock Return Distributions: The Case of the Market Index," The Journal of Business, University of Chicago Press, vol. 61(4), pages 451-72, October.
    6. Nicolas Chopin, 2002. "A sequential particle filter method for static models," Biometrika, Biometrika Trust, vol. 89(3), pages 539-552, August.
    7. Mark A. Beaumont & Jean-Marie Cornuet & Jean-Michel Marin & Christian P. Robert, 2009. "Adaptive approximate Bayesian computation," Biometrika, Biometrika Trust, vol. 96(4), pages 983-990.
    8. Matthias Fischer, 2010. "Generalized Tukey-type distributions with application to financial and teletraffic data," Statistical Papers, Springer, vol. 51(1), pages 41-56, January.
    9. C. C. Drovandi & A. N. Pettitt, 2011. "Estimation of Parameters for Macroparasite Population Evolution Using Approximate Bayesian Computation," Biometrics, The International Biometric Society, vol. 67(1), pages 225-233, 03.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:9:p:2541-2556. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.