IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v55y2011i7p2410-2420.html
   My bibliography  Save this article

An imputation method for categorical variables with application to nonlinear principal component analysis

Author

Listed:
  • Ferrari, Pier Alda
  • Annoni, Paola
  • Barbiero, Alessandro
  • Manzi, Giancarlo

Abstract

The problem of missing data in building multidimensional composite indicators is a delicate problem which is often underrated. An imputation method particularly suitable for categorical data is proposed. This method is discussed in detail in the framework of nonlinear principal component analysis and compared to other missing data treatments which are commonly used in this analysis. Its performance vs. these other methods is evaluated throughout a simulation procedure performed on both an artificial case, varying the experimental conditions, and a real case. The proposed procedure is implemented using R1.

Suggested Citation

  • Ferrari, Pier Alda & Annoni, Paola & Barbiero, Alessandro & Manzi, Giancarlo, 2011. "An imputation method for categorical variables with application to nonlinear principal component analysis," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2410-2420, July.
  • Handle: RePEc:eee:csdana:v:55:y:2011:i:7:p:2410-2420
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(11)00052-1
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pier Ferrari & Paola Annoni & Giancarlo Manzi, 2010. "Evaluation and comparison of European countries: public opinion on services," Quality & Quantity: International Journal of Methodology, Springer, vol. 44(6), pages 1191-1205, October.
    2. James R. Carpenter & Michael G. Kenward & Stijn Vansteelandt, 2006. "A comparison of multiple imputation and doubly robust estimation for analyses with missing data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(3), pages 571-584.
    3. White, Ian R. & Daniel, Rhian & Royston, Patrick, 2010. "Avoiding bias due to perfect prediction in multiple imputation of incomplete categorical variables," Computational Statistics & Data Analysis, Elsevier, vol. 54(10), pages 2267-2275, October.
    4. Serneels, Sven & Verdonck, Tim, 2009. "Principal component regression for data containing outliers and missing elements," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3855-3863, September.
    5. Siddique, Juned & Belin, Thomas R., 2008. "Using an Approximate Bayesian Bootstrap to multiply impute nonignorable missing data," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 405-415, December.
    6. Christopher Paul & William Mason & Daniel McCaffrey & Sarah Fox, 2008. "A cautionary case study of approaches to the treatment of missing data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 17(3), pages 351-372, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:spr:advdac:v:11:y:2017:i:2:d:10.1007_s11634-016-0243-0 is not listed on IDEAS
    2. Arboretti, Rosa & Bonnini, Stefano & Corain, Livio & Salmaso, Luigi, 2014. "A permutation approach for ranking of multivariate populations," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 39-57.
    3. Pier Alda FERRARI & Alessandro BARBIERO, 2011. "Generating ordinal data," Departmental Working Papers 2011-38, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:7:p:2410-2420. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/csda .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.