Importance sampling imputation algorithms in quantile regression with their application in CGSS data
Author
Abstract
Suggested Citation
DOI: 10.1016/j.matcom.2021.04.014
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
- James R. Carpenter & Michael G. Kenward & Stijn Vansteelandt, 2006. "A comparison of multiple imputation and doubly robust estimation for analyses with missing data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(3), pages 571-584, July.
- Wooldridge, Jeffrey M., 2007.
"Inverse probability weighted estimation for general missing data problems,"
Journal of Econometrics, Elsevier, vol. 141(2), pages 1281-1301, December.
- Jeffrey M. Wooldridge, 2004. "Inverse probability weighted estimation for general missing data problems," CeMMAP working papers CWP05/04, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Zhou, Yong & Wan, Alan T. K & Wang, Xiaojing, 2008. "Estimating Equations Inference With Missing Data," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 1187-1199.
- Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521608275.
- Xuerong Chen & Alan T. K. Wan & Yong Zhou, 2015. "Efficient Quantile Regression Analysis With Missing Observations," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 723-741, June.
- Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731.
- Wei, Ying & Carroll, Raymond J., 2009. "Quantile Regression With Measurement Error," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1129-1143.
- Ying Wei & Yanyuan Ma & Raymond J. Carroll, 2012. "Multiple imputation in quantile regression," Biometrika, Biometrika Trust, vol. 99(2), pages 423-438.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Harding, Matthew & Lamarche, Carlos, 2019.
"A panel quantile approach to attrition bias in Big Data: Evidence from a randomized experiment,"
Journal of Econometrics, Elsevier, vol. 211(1), pages 61-82.
- Matthew Harding & Carlos Lamarche, 2018. "A Panel Quantile Approach to Attrition Bias in Big Data: Evidence from a Randomized Experiment," Papers 1808.03364, arXiv.org.
- Shuanghua Luo & Changlin Mei & Cheng-yi Zhang, 2017. "Smoothed empirical likelihood for quantile regression models with response data missing at random," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(1), pages 95-116, January.
- Sherwood, Ben, 2016. "Variable selection for additive partial linear quantile regression with missing covariates," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 206-223.
- Chesher, Andrew, 2017.
"Understanding the effect of measurement error on quantile regressions,"
Journal of Econometrics, Elsevier, vol. 200(2), pages 223-237.
- Andrew Chesher, 2017. "Understanding the effect of measurement error on quantile regressions," CeMMAP working papers 19/17, Institute for Fiscal Studies.
- Andrew Chesher, 2017. "Understanding the effect of measurement error on quantile regressions," CeMMAP working papers CWP19/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Graham, Bryan S. & Hahn, Jinyong & Poirier, Alexandre & Powell, James L., 2018.
"A quantile correlated random coefficients panel data model,"
Journal of Econometrics, Elsevier, vol. 206(2), pages 305-335.
- Bryan S. Graham & Jinyong Hahn & Alexandre Poirier & James L. Powell, 2016. "A quantile correlated random coefficients panel data model," CeMMAP working papers 34/16, Institute for Fiscal Studies.
- Bryan S. Graham & Jinyong Hahn & Alexandre Poirier & James L. Powell, 2016. "A quantile correlated random coefficients panel data model," CeMMAP working papers CWP34/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Guodong Li & Yang Li & Chih-Ling Tsai, 2015. "Quantile Correlations and Quantile Autoregressive Modeling," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 246-261, March.
- Hao Cheng & Ying Wei, 2018. "A fast imputation algorithm in quantile regression," Computational Statistics, Springer, vol. 33(4), pages 1589-1603, December.
- Manuel Arellano & Stéphane Bonhomme, 2016.
"Nonlinear panel data estimation via quantile regressions,"
Econometrics Journal, Royal Economic Society, vol. 19(3), pages 61-94, October.
- Manuel Arellano & Stéphane Bonhomme, 2015. "Nonlinear panel data estimation via quantile regressions," CeMMAP working papers 40/15, Institute for Fiscal Studies.
- Manuel Arellano & Stéphane Bonhomme, 2015. "Nonlinear Panel Data Estimation via Quantile Regression," Working Papers wp2015_1505, CEMFI.
- Manuel Arellano & Stéphane Bonhomme, 2015. "Nonlinear panel data estimation via quantile regressions," CeMMAP working papers CWP40/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Manuel Arellano & Stéphane Bonhomme, 2017.
"Nonlinear Panel Data Methods for Dynamic Heterogeneous Agent Models,"
Annual Review of Economics, Annual Reviews, vol. 9(1), pages 471-496, September.
- Manuel Arellano & Stéphane Bonhomme, 2016. "Nonlinear Panel Data Methods for Dynamic Heterogeneous Agent Models," Working Papers wp2016_1607, CEMFI.
- Manuel Arellano & Stéphane Bonhomme, 2017. "Nonlinear Panel Data Methods for Dynamic Heterogeneous Agent Models," Working Papers wp2017_1703, CEMFI.
- Manuel Arellano & Stéphane Bonhomme, 2016. "Nonlinear panel data methods for dynamic heterogeneous agent models," CeMMAP working papers CWP51/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Manuel Arellano & Stéphane Bonhomme, 2016. "Nonlinear panel data methods for dynamic heterogeneous agent models," CeMMAP working papers 51/16, Institute for Fiscal Studies.
- Yuanshan Wu & Yanyuan Ma & Guosheng Yin, 2015. "Smoothed and Corrected Score Approach to Censored Quantile Regression With Measurement Errors," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1670-1683, December.
- Gimenes, Nathalie & Guerre, Emmanuel, 2022. "Quantile regression methods for first-price auctions," Journal of Econometrics, Elsevier, vol. 226(2), pages 224-247.
- Nicoletti, Cheti, 2008. "Multiple sample selection in the estimation of intergenerational occupational mobility," ISER Working Paper Series 2008-20, Institute for Social and Economic Research.
- Peisong Han, 2014. "Multiply Robust Estimation in Regression Analysis With Missing Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1159-1173, September.
- Firpo, Sergio & Galvao, Antonio F. & Song, Suyong, 2017. "Measurement errors in quantile regression models," Journal of Econometrics, Elsevier, vol. 198(1), pages 146-164.
- Yu Shen & Han-Ying Liang, 2018. "Quantile regression and its empirical likelihood with missing response at random," Statistical Papers, Springer, vol. 59(2), pages 685-707, June.
- Asongu, Simplice A. & Odhiambo, Nicholas M., 2021.
"Inequality, finance and renewable energy consumption in Sub-Saharan Africa,"
Renewable Energy, Elsevier, vol. 165(P1), pages 678-688.
- Simplice A. Asongu & Nicholas M. Odhiambo, 2020. "Inequality, Finance and Renewable Energy Consumption in Sub-Saharan Africa," Working Papers 20/084, European Xtramile Centre of African Studies (EXCAS).
- Simplice A. Asongu & Nicholas M. Odhiambo, 2020. "Inequality, Finance and Renewable Energy Consumption in Sub-Saharan Africa," Working Papers of the African Governance and Development Institute. 20/084, African Governance and Development Institute..
- Asongu, Simplice & Odhiambo, Nicholas, 2020. "Inequality, Finance and Renewable Energy Consumption in Sub-Saharan Africa," MPRA Paper 107510, University Library of Munich, Germany.
- Simplice A. Asongu & Nicholas M. Odhiambo, 2020. "Inequality, Finance and Renewable Energy Consumption in Sub-Saharan Africa," Research Africa Network Working Papers 20/084, Research Africa Network (RAN).
- Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018.
"Asset allocation strategies based on penalized quantile regression,"
Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
- Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2015. "Asset Allocation Strategies Based on Penalized Quantile Regression," Papers 1507.00250, arXiv.org.
- Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2015. "Asset Allocation Strategies Based On Penalized Quantile Regression," "Marco Fanno" Working Papers 0199, Dipartimento di Scienze Economiche "Marco Fanno".
- Abeliansky, Ana & Krenz, Astrid, 2015.
"Democracy and international trade: Differential effects from a panel quantile regression framework,"
University of Göttingen Working Papers in Economics
243, University of Goettingen, Department of Economics.
- Krenz, Astrid & Abeliansky, Ana, 2016. "Democracy and International Trade: Differential Effects from a Panel Quantile Regression Framework," VfS Annual Conference 2016 (Augsburg): Demographic Change 145788, Verein für Socialpolitik / German Economic Association.
- Muller, Christophe, 2018.
"Heterogeneity and nonconstant effect in two-stage quantile regression,"
Econometrics and Statistics, Elsevier, vol. 8(C), pages 3-12.
- Christophe Muller, 2017. "Heterogeneity and Non-Constant Effect in Two-Stage Quantile Regression," Working Papers halshs-01157552, HAL.
- Christophe Muller, 2018. "Heterogeneity and nonconstant effect in two-stage quantile regression," Post-Print hal-01647474, HAL.
- Mayya Zhilova, 2015. "Simultaneous likelihood-based bootstrap confidence sets for a large number of models," SFB 649 Discussion Papers SFB649DP2015-031, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
More about this item
Keywords
Importance sampling; Inverse probability weighting; Quantile regression; CGSS;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:188:y:2021:i:c:p:498-508. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.