IDEAS home Printed from https://ideas.repec.org/p/mil/wpdepa/2011-38.html
   My bibliography  Save this paper

Generating ordinal data

Author

Listed:
  • Pier Alda FERRARI

    ()

  • Alessandro BARBIERO

    ()

Abstract

Due to the increasing use of ordinal variables in different fields, new statistical methods for their analysis have been introduced, whose performances need to be investigated under different experimental conditions. Proper procedures to simulate from ordinal variables are then requested. The present paper deals with the simulation from multivariate ordinal random variables. A new proposal for generating samples from ordinal random variables with pre-specified correlation matrix and marginal distributions is presented. Its features are examined and a comparison to its main competitors is discussed. A software implementation by the R package is provided. Examples of application are also supplied.

Suggested Citation

  • Pier Alda FERRARI & Alessandro BARBIERO, 2011. "Generating ordinal data," Departmental Working Papers 2011-38, Department of Economics, Management and Quantitative Methods at Universit√† degli Studi di Milano.
  • Handle: RePEc:mil:wpdepa:2011-38
    as

    Download full text from publisher

    File URL: http://wp.demm.unimi.it/files/wp/2011/DEMM-2011_038wp.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Biswas, Atanu, 2004. "Generating correlated ordinal categorical random samples," Statistics & Probability Letters, Elsevier, vol. 70(1), pages 25-35, October.
    2. Stanhope, Stephen, 2005. "Case studies in multivariate-to-anything transforms for partially specified random vector generation," Insurance: Mathematics and Economics, Elsevier, vol. 37(1), pages 68-79, August.
    3. Philip M. Lurie & Matthew S. Goldberg, 1998. "An Approximate Method for Sampling Correlated Random Variables from Partially-Specified Distributions," Management Science, INFORMS, vol. 44(2), pages 203-218, February.
    4. Ferrari, Pier Alda & Annoni, Paola & Barbiero, Alessandro & Manzi, Giancarlo, 2011. "An imputation method for categorical variables with application to nonlinear principal component analysis," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2410-2420, July.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Likert scale; marginal distribution; Monte Carlo simulation; multivariate discrete random variable; non-linear principal component analysis; Pearson correlation coefficient;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mil:wpdepa:2011-38. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (DEMM Working Papers). General contact details of provider: http://edirc.repec.org/data/damilit.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.