IDEAS home Printed from https://ideas.repec.org/a/spr/comgts/v17y2020i2d10.1007_s10287-020-00369-2.html
   My bibliography  Save this article

Scenario tree construction driven by heuristic solutions of the optimization problem

Author

Listed:
  • Vit Prochazka

    (NHH Norwegian School of Economics
    SNF – Centre for Applied Research at NHH)

  • Stein W. Wallace

    (NHH Norwegian School of Economics)

Abstract

We present a new scenario generation process approach driven purely by the out-of-sample performance of a pool of solutions, obtained by some heuristic procedure. We formulate a loss function that measures the discrepancy between out-of-sample and in-sample (in-tree) performance of the solutions. By minimizing such a (usually non-linear, non-convex) loss function for a given number of scenarios, we receive an approximation of the underlying probability distribution with respect to the optimization problem. This approach is especially convenient in cases where the optimization problem is solvable only for a very limited number of scenarios, but an out-of-sample evaluation of the solution is reasonably fast. Another possible usage is the case of binary distributions, where classical scenario generation methods based on fitting the scenario tree and the underlying distribution do not work.

Suggested Citation

  • Vit Prochazka & Stein W. Wallace, 2020. "Scenario tree construction driven by heuristic solutions of the optimization problem," Computational Management Science, Springer, vol. 17(2), pages 277-307, June.
  • Handle: RePEc:spr:comgts:v:17:y:2020:i:2:d:10.1007_s10287-020-00369-2
    DOI: 10.1007/s10287-020-00369-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10287-020-00369-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10287-020-00369-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Haugland, Dag & Wallace, Stein W., 1988. "Solving many linear programs that differ only in the righthand side," European Journal of Operational Research, Elsevier, vol. 37(3), pages 318-324, December.
    2. Vit Prochazka & Stein W. Wallace, 2018. "Stochastic programs with binary distributions: structural properties of scenario trees and algorithms," Computational Management Science, Springer, vol. 15(3), pages 397-410, October.
    3. Eligius M.T. Hendrix & Boglárka G.-Tóth, 2010. "Introduction to Nonlinear and Global Optimization," Springer Optimization and Its Applications, Springer, number 978-0-387-88670-1, June.
    4. Philip M. Lurie & Matthew S. Goldberg, 1998. "An Approximate Method for Sampling Correlated Random Variables from Partially-Specified Distributions," Management Science, INFORMS, vol. 44(2), pages 203-218, February.
    5. Julia L. Higle & Suvrajeet Sen, 1991. "Stochastic Decomposition: An Algorithm for Two-Stage Linear Programs with Recourse," Mathematics of Operations Research, INFORMS, vol. 16(3), pages 650-669, August.
    6. Michal Kaut & Hercules Vladimirou & Stein W. Wallace & Stavros A. Zenios, 2007. "Stability analysis of portfolio management with conditional value-at-risk," Quantitative Finance, Taylor & Francis Journals, vol. 7(4), pages 397-409.
    7. Kjetil Høyland & Stein W. Wallace, 2001. "Generating Scenario Trees for Multistage Decision Problems," Management Science, INFORMS, vol. 47(2), pages 295-307, February.
    8. Michel Gendreau & Ola Jabali & Walter Rei, 2016. "50th Anniversary Invited Article—Future Research Directions in Stochastic Vehicle Routing," Transportation Science, INFORMS, vol. 50(4), pages 1163-1173, November.
    9. Russell W. Bent & Pascal Van Hentenryck, 2004. "Scenario-Based Planning for Partially Dynamic Vehicle Routing with Stochastic Customers," Operations Research, INFORMS, vol. 52(6), pages 977-987, December.
    10. Michal Kaut, 2014. "A copula-based heuristic for scenario generation," Computational Management Science, Springer, vol. 11(4), pages 503-516, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Narum, Benjamin S. & Fairbrother, Jamie & Wallace, Stein W., 2024. "Problem-based scenario generation by decomposing output distributions," European Journal of Operational Research, Elsevier, vol. 318(1), pages 154-166.
    2. Julien Keutchayan & Janosch Ortmann & Walter Rei, 2023. "Problem-driven scenario clustering in stochastic optimization," Computational Management Science, Springer, vol. 20(1), pages 1-33, December.
    3. Wei Zhang & Kai Wang & Alexandre Jacquillat & Shuaian Wang, 2023. "Optimized Scenario Reduction: Solving Large-Scale Stochastic Programs with Quality Guarantees," INFORMS Journal on Computing, INFORMS, vol. 35(4), pages 886-908, July.
    4. Ksciuk, Jana & Kuhlemann, Stefan & Tierney, Kevin & Koberstein, Achim, 2023. "Uncertainty in maritime ship routing and scheduling: A Literature review," European Journal of Operational Research, Elsevier, vol. 308(2), pages 499-524.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhaoxia Guo & Stein W. Wallace & Michal Kaut, 2019. "Vehicle Routing with Space- and Time-Correlated Stochastic Travel Times: Evaluating the Objective Function," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 654-670, October.
    2. Wu, Dexiang & Wu, Desheng Dash, 2020. "A decision support approach for two-stage multi-objective index tracking using improved lagrangian decomposition," Omega, Elsevier, vol. 91(C).
    3. D. Kuhn, 2009. "Convergent Bounds for Stochastic Programs with Expected Value Constraints," Journal of Optimization Theory and Applications, Springer, vol. 141(3), pages 597-618, June.
    4. Arbrie Jashari & Victor Tiberius & Marina Dabić, 2022. "Tracing the progress of scenario research in business and management," Futures & Foresight Science, John Wiley & Sons, vol. 4(2), June.
    5. Marlin W. Ulmer, 2020. "Horizontal combinations of online and offline approximate dynamic programming for stochastic dynamic vehicle routing," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 279-308, March.
    6. Topaloglou, Nikolas & Vladimirou, Hercules & Zenios, Stavros A., 2020. "Integrated dynamic models for hedging international portfolio risks," European Journal of Operational Research, Elsevier, vol. 285(1), pages 48-65.
    7. Zhang, Jian & Woensel, Tom Van, 2023. "Dynamic vehicle routing with random requests: A literature review," International Journal of Production Economics, Elsevier, vol. 256(C).
    8. Staino, Alessandro & Russo, Emilio, 2015. "A moment-matching method to generate arbitrage-free scenarios," European Journal of Operational Research, Elsevier, vol. 246(2), pages 619-630.
    9. Zhao, Daping & Bai, Lin & Fang, Yong & Wang, Shouyang, 2022. "Multi‐period portfolio selection with investor views based on scenario tree," Applied Mathematics and Computation, Elsevier, vol. 418(C).
    10. Jörgen Blomvall & Jonas Ekblom, 2018. "Corporate hedging: an answer to the “how” question," Annals of Operations Research, Springer, vol. 266(1), pages 35-69, July.
    11. Alexandre M. Florio & Nabil Absi & Dominique Feillet, 2021. "Routing Electric Vehicles on Congested Street Networks," Transportation Science, INFORMS, vol. 55(1), pages 238-256, 1-2.
    12. Julien Keutchayan & Janosch Ortmann & Walter Rei, 2023. "Problem-driven scenario clustering in stochastic optimization," Computational Management Science, Springer, vol. 20(1), pages 1-33, December.
    13. Nonthachote Chatsanga & Andrew J. Parkes, 2017. "Two-Stage Stochastic International Portfolio Optimisation under Regular-Vine-Copula-Based Scenarios," Papers 1704.01174, arXiv.org.
    14. Michal Kaut & Stein Wallace, 2011. "Shape-based scenario generation using copulas," Computational Management Science, Springer, vol. 8(1), pages 181-199, April.
    15. Ritzinger, Ulrike & Puchinger, Jakob & Rudloff, Christian & Hartl, Richard F., 2022. "Comparison of anticipatory algorithms for a dial-a-ride problem," European Journal of Operational Research, Elsevier, vol. 301(2), pages 591-608.
    16. Mitra, Sovan & Lim, Sungmook & Karathanasopoulos, Andreas, 2019. "Regression based scenario generation: Applications for performance management," Operations Research Perspectives, Elsevier, vol. 6(C).
    17. Wei Zhang & Kai Wang & Alexandre Jacquillat & Shuaian Wang, 2023. "Optimized Scenario Reduction: Solving Large-Scale Stochastic Programs with Quality Guarantees," INFORMS Journal on Computing, INFORMS, vol. 35(4), pages 886-908, July.
    18. Weiguo Zhang & Xiaolei He, 2022. "A New Scenario Reduction Method Based on Higher-Order Moments," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 1903-1918, July.
    19. Tiberius, Victor & Siglow, Caroline & Sendra-García, Javier, 2020. "Scenarios in business and management: The current stock and research opportunities," Journal of Business Research, Elsevier, vol. 121(C), pages 235-242.
    20. Narum, Benjamin S. & Fairbrother, Jamie & Wallace, Stein W., 2024. "Problem-based scenario generation by decomposing output distributions," European Journal of Operational Research, Elsevier, vol. 318(1), pages 154-166.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comgts:v:17:y:2020:i:2:d:10.1007_s10287-020-00369-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.