IDEAS home Printed from
   My bibliography  Save this article

Using Gaussian copula to simulate repetitive projects


  • I-Tung Yang


An important requirement for simulating repetitive projects is to treat correlations inherent in the repetition of same crews working at various locations. To attain the requirement, this study develops a new Monte Carlo simulation model implementing a Gaussian copula in conjunction with the inverse-transform method to generate correlated duration samples in repetitive projects that have pre-specified marginal distributions and pairwise rank correlations. The proposed model is equipped with an automatic approximation procedure to adjust an infeasible correlation matrix, if necessary. The proposed model is statistically verified through a real-life residential apartment project. The simulation results are compared to two conventional analyses (PERT and simulation without correlation) to show the aggregated impact of correlations. The proposed model contributes to the state-of-the-art in handling non-linear dependencies among activity durations that may have non-normal distributions. Moreover, it is flexible in the ways of correlation assessments (qualitative or quantitative), the magnitudes of correlations (weak to strong), and the types of marginal distributions (symmetrical or skewed).

Suggested Citation

  • I-Tung Yang, 2006. "Using Gaussian copula to simulate repetitive projects," Construction Management and Economics, Taylor & Francis Journals, vol. 24(9), pages 901-909.
  • Handle: RePEc:taf:conmgt:v:24:y:2006:i:9:p:901-909
    DOI: 10.1080/01446190600658784

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Philip M. Lurie & Matthew S. Goldberg, 1998. "An Approximate Method for Sampling Correlated Random Variables from Partially-Specified Distributions," Management Science, INFORMS, vol. 44(2), pages 203-218, February.
    2. Malik Ranasinghe, 2000. "Impact of correlation and induced correlation on the estimation of project cost of buildings," Construction Management and Economics, Taylor & Francis Journals, vol. 18(4), pages 395-406.
    3. Robert T. Clemen & Terence Reilly, 1999. "Correlations and Copulas for Decision and Risk Analysis," Management Science, INFORMS, vol. 45(2), pages 208-224, February.
    4. David Wall, 1997. "Distributions and correlations in Monte Carlo simulation," Construction Management and Economics, Taylor & Francis Journals, vol. 15(3), pages 241-258.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:conmgt:v:24:y:2006:i:9:p:901-909. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.