IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v52y2008i5p2331-2349.html
   My bibliography  Save this article

Fast kriging of large data sets with Gaussian Markov random fields

Author

Listed:
  • Hartman, Linda
  • Hossjer, Ola

Abstract

No abstract is available for this item.

Suggested Citation

  • Hartman, Linda & Hossjer, Ola, 2008. "Fast kriging of large data sets with Gaussian Markov random fields," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2331-2349, January.
  • Handle: RePEc:eee:csdana:v:52:y:2008:i:5:p:2331-2349
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(07)00356-8
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Håvard Rue, 2001. "Fast sampling of Gaussian Markov random fields," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 325-338.
    2. Peter Diggle & Søren Lophaven, 2006. "Bayesian Geostatistical Design," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(1), pages 53-64, March.
    3. Hååvard Rue & Hååkon Tjelmeland, 2002. "Fitting Gaussian Markov Random Fields to Gaussian Fields," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(1), pages 31-49, March.
    4. Sara Sjöstedt‐de Luna & Alastair Young, 2003. "The Bootstrap and Kriging Prediction Intervals," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(1), pages 175-192, March.
    5. E. E. Kammann & M. P. Wand, 2003. "Geoadditive models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 52(1), pages 1-18, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mühlenstädt, Thomas & Kuhnt, Sonja, 2011. "Kernel interpolation," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2962-2974, November.
    2. Jason S. Byers & Jeff Gill, 2022. "Applied Geospatial Bayesian Modeling in the Big Data Era: Challenges and Solutions," Mathematics, MDPI, vol. 10(21), pages 1-23, November.
    3. Montero, José-María & Fernández-Avilés, Gema, 2015. "Functional Kriging Prediction of Pollution Series: The Geostatistical Alternative for Spatially-fixed Data/Predicción de series de contaminación mediante kriging funcional. La alternativa geoestadísti," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 33, pages 145-179, Enero.
    4. Axel Schaffer & Jan Rauland, 2011. "Regional efficiency in generating technological knowledge," ERSA conference papers ersa10p1108, European Regional Science Association.
    5. Cavoretto, R. & De Rossi, A. & Perracchione, E., 2023. "Learning with Partition of Unity-based Kriging Estimators," Applied Mathematics and Computation, Elsevier, vol. 448(C).
    6. Furrer, Reinhard & Bachoc, François & Du, Juan, 2016. "Asymptotic properties of multivariate tapering for estimation and prediction," Journal of Multivariate Analysis, Elsevier, vol. 149(C), pages 177-191.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Håvard Rue & Ingelin Steinsland & Sveinung Erland, 2004. "Approximating hidden Gaussian Markov random fields," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(4), pages 877-892, November.
    2. Varin, Cristiano & Host, Gudmund & Skare, Oivind, 2005. "Pairwise likelihood inference in spatial generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 49(4), pages 1173-1191, June.
    3. Vinicius Mayrink & Dani Gamerman, 2009. "On computational aspects of Bayesian spatial models: influence of the neighboring structure in the efficiency of MCMC algorithms," Computational Statistics, Springer, vol. 24(4), pages 641-669, December.
    4. Brezger, Andreas & Lang, Stefan, 2006. "Generalized structured additive regression based on Bayesian P-splines," Computational Statistics & Data Analysis, Elsevier, vol. 50(4), pages 967-991, February.
    5. Steinsland, Ingelin, 2007. "Parallel exact sampling and evaluation of Gaussian Markov random fields," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 2969-2981, March.
    6. Eidsvik, Jo & Finley, Andrew O. & Banerjee, Sudipto & Rue, Håvard, 2012. "Approximate Bayesian inference for large spatial datasets using predictive process models," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1362-1380.
    7. Ying C. MacNab, 2018. "Rejoinder on: Some recent work on multivariate Gaussian Markov random fields," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 554-569, September.
    8. Paciorek, Christopher J., 2007. "Computational techniques for spatial logistic regression with large data sets," Computational Statistics & Data Analysis, Elsevier, vol. 51(8), pages 3631-3653, May.
    9. Ren, Qian & Banerjee, Sudipto & Finley, Andrew O. & Hodges, James S., 2011. "Variational Bayesian methods for spatial data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3197-3217, December.
    10. K. Shuvo Bakar & Nicholas Biddle & Philip Kokic & Huidong Jin, 2020. "A Bayesian spatial categorical model for prediction to overlapping geographical areas in sample surveys," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 535-563, February.
    11. Lee, Dae-Jin & Durbán, María, 2009. "P-spline anova-type interaction models for spatio-temporal smoothing," DES - Working Papers. Statistics and Econometrics. WS ws093312, Universidad Carlos III de Madrid. Departamento de Estadística.
    12. repec:jss:jstsof:21:i08 is not listed on IDEAS
    13. Liu, Wei-han, 2016. "A re-examination of maturity effect of energy futures price from the perspective of stochastic volatility," Energy Economics, Elsevier, vol. 56(C), pages 351-362.
    14. Stephan R. Sain & Reinhard Furrer, 2018. "Comments on: Some recent work on multivariate Gaussian Markov random fields," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 545-548, September.
    15. Veronique Dermauw & Ellen Van De Vijver & Pierre Dorny & Emanuele Giorgi & Rasmané Ganaba & Athanase Millogo & Zékiba Tarnagda & Assana Kone Cissé & Hélène Carabin, 2023. "Geostatistical analysis of active human cysticercosis: Results of a large-scale study in 60 villages in Burkina Faso," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 17(7), pages 1-20, July.
    16. Ferreira, Marco A.R. & De Oliveira, Victor, 2007. "Bayesian reference analysis for Gaussian Markov random fields," Journal of Multivariate Analysis, Elsevier, vol. 98(4), pages 789-812, April.
    17. Joshua C. C. Chan, 2017. "The Stochastic Volatility in Mean Model With Time-Varying Parameters: An Application to Inflation Modeling," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 17-28, January.
    18. Samson B. Adebayo, 2004. "Bayesian geoadditive modelling of breastfeeding initiation in Nigeria," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 19(2), pages 267-281.
    19. Borgoni, Riccardo & Radaelli, Luigi & Tritto, Valeria & Zappa, Diego, 2013. "Optimal reduction of a spatial monitoring grid: Proposals and applications in process control," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 407-419.
    20. Martin Feldkircher & Florian Huber, 2018. "Unconventional U.S. Monetary Policy: New Tools, Same Channels?," JRFM, MDPI, vol. 11(4), pages 1-31, October.
    21. Dimitris Karlis & Azmi Chutoo & Naushad Mamode Khan & Vandna Jowaheer, 2024. "The multilateral spatial integer‐valued process of order 1," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 78(1), pages 4-24, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:52:y:2008:i:5:p:2331-2349. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.