IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

P-spline anova-type interaction models for spatio-temporal smoothing

Listed author(s):
  • Durbán, María
  • Lee, Dae-Jin
Registered author(s):

    In recent years, spatial and spatio-temporal modelling have become an important area of research in many fields (epidemiology, environmental studies, disease mapping, ...). However, most of the models developed are constrained by the large amounts of data available. We propose the use of Penalized splines (P-splines) in a mixed model framework for smoothing spatio-temporal data. Our approach allows the consideration of interaction terms which can be decomposed as a sum of smooth functions similarly as an ANOVA decomposition. The properties of the bases used for regression allow the use of algorithms that can handle large amount of data. We show that imposing the same constraints as in a factorial design it is possible to avoid identifiability problems. We illustrate the methodology for Europe ozone levels in the period 1999-2005.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: no

    Paper provided by Universidad Carlos III de Madrid. Departamento de Estadística in its series DES - Working Papers. Statistics and Econometrics. WS with number ws093312.

    in new window

    Date of creation: Jun 2009
    Handle: RePEc:cte:wsrepe:ws093312
    Contact details of provider: Web page:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Ying C. MacNab & C. B. Dean, 2001. "Autoregressive Spatial Smoothing and Temporal Spline Smoothing for Mapping Rates," Biometrics, The International Biometric Society, vol. 57(3), pages 949-956, 09.
    2. I. D. Currie & M. Durban & P. H. C. Eilers, 2006. "Generalized linear array models with applications to multidimensional smoothing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(2), pages 259-280.
    3. Marx, Brian D. & Eilers, Paul H. C., 1998. "Direct generalized additive modeling with penalized likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 28(2), pages 193-209, August.
    4. Arũnas P. Verbyla & Brian R. Cullis & Michael G. Kenward & Sue J. Welham, 1999. "The Analysis of Designed Experiments and Longitudinal Data by Using Smoothing Splines," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 48(3), pages 269-311.
    5. C. Gössl & D. P. Auer & L. Fahrmeir, 2001. "Bayesian Spatiotemporal Inference in Functional Magnetic Resonance Imaging," Biometrics, The International Biometric Society, vol. 57(2), pages 554-562, 06.
    6. E. E. Kammann & M. P. Wand, 2003. "Geoadditive models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 52(1), pages 1-18.
    7. Lee, Dae-Jin & Durbán, María, 2009. "Smooth-CAR mixed models for spatial count data," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2968-2979, June.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws093312. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ana Poveda)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.