IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Smooth-car mixed models for spatial count data

  • Dae-Jin Lee

    ()

  • Maria Durban

    ()

Registered author(s):

    Penalized splines (P-splines) and individual random effects are used for the analysis of spatial count data. P-splines are represented as mixed models to give a unified approach to the model estimation procedure. First, a model where the spatial variation is modelled by a two-dimensional P-spline at the centroids of the areas or regions is considered. In addition, individual area-effects are incorporated as random effects to account for individual variation among regions. Finally, the model is extended by considering a conditional autoregressive (CAR) structure for the random effects, these are the so called “Smooth-CAR” models, with the aim of separating the large-scale geographical trend, and local spatial correlation. The methodology proposed is applied to the analysis of lip cancer incidence rates in Scotland.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://e-archivo.uc3m.es/bitstream/10016/3203/1/ws085820.pdf
    Download Restriction: no

    Paper provided by Universidad Carlos III, Departamento de Estadística y Econometría in its series Statistics and Econometrics Working Papers with number ws085820.

    as
    in new window

    Length:
    Date of creation: Nov 2008
    Date of revision:
    Handle: RePEc:cte:wsrepe:ws085820
    Contact details of provider: Postal: C/ Madrid, 126 - 28903 GETAFE (MADRID)
    Phone: 6249847
    Fax: 6249849
    Web page: http://portal.uc3m.es/portal/page/portal/dpto_estadistica

    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Congdon, Peter, 2007. "Mixtures of spatial and unstructured effects for spatially discontinuous health outcomes," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 3197-3212, March.
    2. Congdon, Peter, 2006. "A model for non-parametric spatially varying regression effects," Computational Statistics & Data Analysis, Elsevier, vol. 50(2), pages 422-445, January.
    3. I. D. Currie & M. Durban & P. H. C. Eilers, 2006. "Generalized linear array models with applications to multidimensional smoothing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(2), pages 259-280.
    4. X. Lin & D. Zhang, 1999. "Inference in generalized additive mixed modelsby using smoothing splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(2), pages 381-400.
    5. E. E. Kammann & M. P. Wand, 2003. "Geoadditive models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 52(1), pages 1-18.
    6. Hinde, John & Demetrio, Clarice G. B., 1998. "Overdispersion: Models and estimation," Computational Statistics & Data Analysis, Elsevier, vol. 27(2), pages 151-170, April.
    7. Marx, Brian D. & Eilers, Paul H. C., 1998. "Direct generalized additive modeling with penalized likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 28(2), pages 193-209, August.
    8. C. B. Dean & M. D. Ugarte & A. F. Militino, 2001. "Detecting Interaction Between Random Region and Fixed Age Effects in Disease Mapping," Biometrics, The International Biometric Society, vol. 57(1), pages 197-202, 03.
    9. Arũnas P. Verbyla & Brian R. Cullis & Michael G. Kenward & Sue J. Welham, 1999. "The Analysis of Designed Experiments and Longitudinal Data by Using Smoothing Splines," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 48(3), pages 269-311.
    10. Sally W. Thurston & M. P. Wand & John K. Wiencke, 2000. "Negative Binomial Additive Models," Biometrics, The International Biometric Society, vol. 56(1), pages 139-144, 03.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws085820. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.