IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v52y2008i12p5296-5304.html
   My bibliography  Save this article

Regularized simultaneous model selection in multiple quantiles regression

Author

Listed:
  • Zou, Hui
  • Yuan, Ming

Abstract

Simultaneously estimating multiple conditional quantiles is often regarded as a more appropriate regression tool than the usual conditional mean regression for exploring the stochastic relationship between the response and covariates. When multiple quantile regressions are considered, it is of great importance to share strength among them. In this paper, we propose a novel regularization method that explores the similarity among multiple quantile regressions by selecting a common subset of covariates to model multiple conditional quantiles simultaneously. The penalty we employ is a matrix norm that encourages sparsity in a column-wise fashion. We demonstrate the effectiveness of the proposed method using both simulations and an application of gene expression data analysis.

Suggested Citation

  • Zou, Hui & Yuan, Ming, 2008. "Regularized simultaneous model selection in multiple quantiles regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5296-5304, August.
  • Handle: RePEc:eee:csdana:v:52:y:2008:i:12:p:5296-5304
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00273-9
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Koenker R. & Geling O., 2001. "Reappraising Medfly Longevity: A Quantile Regression Survival Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 458-468, June.
    2. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    3. Koenker, Roger, 2004. "Quantile regression for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 91(1), pages 74-89, October.
    4. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731, May.
    5. Li, Youjuan & Liu, Yufeng & Zhu, Ji, 2007. "Quantile Regression in Reproducing Kernel Hilbert Spaces," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 255-268, March.
    6. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    7. Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chakraborty, Sounak, 2009. "Simultaneous cancer classification and gene selection with Bayesian nearest neighbor method: An integrated approach," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1462-1474, February.
    2. Ji, Yonggang & Lin, Nan & Zhang, Baoxue, 2012. "Model selection in binary and tobit quantile regression using the Gibbs sampler," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 827-839.
    3. Jiang, Liewen & Bondell, Howard D. & Wang, Huixia Judy, 2014. "Interquantile shrinkage and variable selection in quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 208-219.
    4. Chakraborty, Sounak, 2009. "Bayesian binary kernel probit model for microarray based cancer classification and gene selection," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4198-4209, October.
    5. Vahid Nassiri & Ignace Loris, 2014. "An efficient algorithm for structured sparse quantile regression," Computational Statistics, Springer, vol. 29(5), pages 1321-1343, October.
    6. He, Qianchuan & Kong, Linglong & Wang, Yanhua & Wang, Sijian & Chan, Timothy A. & Holland, Eric, 2016. "Regularized quantile regression under heterogeneous sparsity with application to quantitative genetic traits," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 222-239.
    7. Schnabel, Sabine K. & Eilers, Paul H.C., 2009. "Optimal expectile smoothing," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4168-4177, October.
    8. Y. Andriyana & I. Gijbels & A. Verhasselt, 2014. "P-splines quantile regression estimation in varying coefficient models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(1), pages 153-194, March.
    9. Bang, Sungwan & Jhun, Myoungshic, 2012. "Simultaneous estimation and factor selection in quantile regression via adaptive sup-norm regularization," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 813-826.
    10. Tang, Yanlin & Wang, Huixia Judy, 2015. "Penalized regression across multiple quantiles under random censoring," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 132-146.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:52:y:2008:i:12:p:5296-5304. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/csda .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.