IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2004.13347.html
   My bibliography  Save this paper

RM-CVaR: Regularized Multiple $\beta$-CVaR Portfolio

Author

Listed:
  • Kei Nakagawa
  • Shuhei Noma
  • Masaya Abe

Abstract

The problem of finding the optimal portfolio for investors is called the portfolio optimization problem. Such problem mainly concerns the expectation and variability of return (i.e., mean and variance). Although the variance would be the most fundamental risk measure to be minimized, it has several drawbacks. Conditional Value-at-Risk (CVaR) is a relatively new risk measure that addresses some of the shortcomings of well-known variance-related risk measures, and because of its computational efficiencies, it has gained popularity. CVaR is defined as the expected value of the loss that occurs beyond a certain probability level ($\beta$). However, portfolio optimization problems that use CVaR as a risk measure are formulated with a single $\beta$ and may output significantly different portfolios depending on how the $\beta$ is selected. We confirm even small changes in $\beta$ can result in huge changes in the whole portfolio structure. In order to improve this problem, we propose RM-CVaR: Regularized Multiple $\beta$-CVaR Portfolio. We perform experiments on well-known benchmarks to evaluate the proposed portfolio. Compared with various portfolios, RM-CVaR demonstrates a superior performance of having both higher risk-adjusted returns and lower maximum drawdown.

Suggested Citation

  • Kei Nakagawa & Shuhei Noma & Masaya Abe, 2020. "RM-CVaR: Regularized Multiple $\beta$-CVaR Portfolio," Papers 2004.13347, arXiv.org, revised May 2020.
  • Handle: RePEc:arx:papers:2004.13347
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2004.13347
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fama, Eugene F & French, Kenneth R, 1992. "The Cross-Section of Expected Stock Returns," Journal of Finance, American Finance Association, vol. 47(2), pages 427-465, June.
    2. David Ardia & Guido Bolliger & Kris Boudt & Jean-Philippe Gagnon-Fleury, 2017. "The impact of covariance misspecification in risk-based portfolios," Annals of Operations Research, Springer, vol. 254(1), pages 1-16, July.
    3. Jun-ya Gotoh & Akiko Takeda, 2011. "On the role of norm constraints in portfolio selection," Computational Management Science, Springer, vol. 8(4), pages 323-353, November.
    4. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    5. Victor DeMiguel & Lorenzo Garlappi & Francisco J. Nogales & Raman Uppal, 2009. "A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms," Management Science, INFORMS, vol. 55(5), pages 798-812, May.
    6. Jianqing Fan & Jingjin Zhang & Ke Yu, 2012. "Vast Portfolio Selection With Gross-Exposure Constraints," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 592-606, June.
    7. Kei Nakagawa & Mitsuyoshi Imamura & Kenichi Yoshida, 2018. "Risk-Based Portfolios with Large Dynamic Covariance Matrices," IJFS, MDPI, vol. 6(2), pages 1-14, May.
    8. Jun-ya Gotoh & Akiko Takeda & Rei Yamamoto, 2014. "Interaction between financial risk measures and machine learning methods," Computational Management Science, Springer, vol. 11(4), pages 365-402, October.
    9. Zou, Hui & Yuan, Ming, 2008. "Regularized simultaneous model selection in multiple quantiles regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5296-5304, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018. "Asset allocation strategies based on penalized quantile regression," Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
    2. Dimitris Bertsimas & Akiko Takeda, 2015. "Optimizing over coherent risk measures and non-convexities: a robust mixed integer optimization approach," Computational Optimization and Applications, Springer, vol. 62(3), pages 613-639, December.
    3. Gilles Boevi Koumou, 2020. "Diversification and portfolio theory: a review," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 34(3), pages 267-312, September.
    4. Viet Anh Nguyen & Fan Zhang & Shanshan Wang & Jose Blanchet & Erick Delage & Yinyu Ye, 2021. "Robustifying Conditional Portfolio Decisions via Optimal Transport," Papers 2103.16451, arXiv.org, revised Apr 2024.
    5. Ammann, Manuel & Coqueret, Guillaume & Schade, Jan-Philip, 2016. "Characteristics-based portfolio choice with leverage constraints," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 23-37.
    6. Ken Kobayashi & Yuichi Takano & Kazuhide Nakata, 2021. "Bilevel cutting-plane algorithm for cardinality-constrained mean-CVaR portfolio optimization," Journal of Global Optimization, Springer, vol. 81(2), pages 493-528, October.
    7. Nathan Lassance & Frédéric Vrins, 2021. "Minimum Rényi entropy portfolios," Annals of Operations Research, Springer, vol. 299(1), pages 23-46, April.
    8. Cai, T. Tony & Hu, Jianchang & Li, Yingying & Zheng, Xinghua, 2020. "High-dimensional minimum variance portfolio estimation based on high-frequency data," Journal of Econometrics, Elsevier, vol. 214(2), pages 482-494.
    9. Qifa Xu & Junqing Zuo & Cuixia Jiang & Yaoyao He, 2021. "A large constrained time‐varying portfolio selection model with DCC‐MIDAS: Evidence from Chinese stock market," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 3417-3435, July.
    10. Giovanni Bonaccolto, 2019. "Critical Decisions for Asset Allocation via Penalized Quantile Regression," Papers 1908.04697, arXiv.org.
    11. Long Zhao & Deepayan Chakrabarti & Kumar Muthuraman, 2019. "Portfolio Construction by Mitigating Error Amplification: The Bounded-Noise Portfolio," Operations Research, INFORMS, vol. 67(4), pages 965-983, July.
    12. Takano, Yuichi & Gotoh, Jun-ya, 2023. "Dynamic portfolio selection with linear control policies for coherent risk minimization," Operations Research Perspectives, Elsevier, vol. 10(C).
    13. Kei Nakagawa & Masaya Abe & Seiichi Kuroki, 2023. "Doubly Robust Mean-CVaR Portfolio," Papers 2309.11693, arXiv.org.
    14. Fan, Qingliang & Wu, Ruike & Yang, Yanrong & Zhong, Wei, 2024. "Time-varying minimum variance portfolio," Journal of Econometrics, Elsevier, vol. 239(2).
    15. Jun-ya Gotoh & Akiko Takeda & Rei Yamamoto, 2014. "Interaction between financial risk measures and machine learning methods," Computational Management Science, Springer, vol. 11(4), pages 365-402, October.
    16. Yen, Yu-Min & Yen, Tso-Jung, 2014. "Solving norm constrained portfolio optimization via coordinate-wise descent algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 737-759.
    17. Giovanni Bonaccolto, 2021. "Quantile– based portfolios: post– model– selection estimation with alternative specifications," Computational Management Science, Springer, vol. 18(3), pages 355-383, July.
    18. David Wozabal, 2014. "Robustifying Convex Risk Measures for Linear Portfolios: A Nonparametric Approach," Operations Research, INFORMS, vol. 62(6), pages 1302-1315, December.
    19. Vrinda Dhingra & Shiv Kumar Gupta & Amita Sharma, 2023. "Norm constrained minimum variance portfolios with short selling," Computational Management Science, Springer, vol. 20(1), pages 1-35, December.
    20. Bernardo K. Pagnoncelli & Domingo Ramírez & Hamed Rahimian & Arturo Cifuentes, 2023. "A Synthetic Data-Plus-Features Driven Approach for Portfolio Optimization," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 187-204, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2004.13347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.