IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v62y2023i1d10.1007_s10614-022-10274-2.html
   My bibliography  Save this article

A Synthetic Data-Plus-Features Driven Approach for Portfolio Optimization

Author

Listed:
  • Bernardo K. Pagnoncelli

    (Université Côte d’Azur)

  • Domingo Ramírez

    (Pontificia Universidad Católica de Chile)

  • Hamed Rahimian

    (Clemson University)

  • Arturo Cifuentes

    (CLAPES-UC)

Abstract

Features, or contextual information, are additional data than can help predicting asset returns in financial problems. We propose a mean-risk portfolio selection problem that uses contextual information to maximize expected returns at each time period, weighing past observations via kernels based on the current state of the world. We consider yearly intervals for investment opportunities, and a set of indices that cover the most relevant investment classes. For those intervals, data scarcity is a problem that is often dealt with by making distribution assumptions. We take a different path and use distribution-free simulation techniques to populate our database. In our experiments we use the Conditional Value-at-Risk as our risk measure, and we work with data from 2007 until 2021 to evaluate our methodology. Our results show that, by incorporating features, the out-of-sample performance of our strategy outperforms the equally-weighted portfolio. We also generate diversified positions, and efficient frontiers that exhibit coherent risk-return patterns.

Suggested Citation

  • Bernardo K. Pagnoncelli & Domingo Ramírez & Hamed Rahimian & Arturo Cifuentes, 2023. "A Synthetic Data-Plus-Features Driven Approach for Portfolio Optimization," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 187-204, June.
  • Handle: RePEc:kap:compec:v:62:y:2023:i:1:d:10.1007_s10614-022-10274-2
    DOI: 10.1007/s10614-022-10274-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-022-10274-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-022-10274-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
    2. Chang, Chia-Lin & Jimenez-Martin, Juan-Angel & Maasoumi, Esfandiar & McAleer, Michael & Pérez-Amaral, Teodosio, 2019. "Choosing expected shortfall over VaR in Basel III using stochastic dominance," International Review of Economics & Finance, Elsevier, vol. 60(C), pages 95-113.
    3. Muñoz, M.A. & Pineda, S. & Morales, J.M., 2022. "A bilevel framework for decision-making under uncertainty with contextual information," Omega, Elsevier, vol. 108(C).
    4. Mohamed A. Ayadi & Hatem Ben-Ameur & Nabil Channouf & Quang Khoi Tran, 2019. "NORTA for portfolio credit risk," Annals of Operations Research, Springer, vol. 281(1), pages 99-119, October.
    5. Victor DeMiguel & Lorenzo Garlappi & Francisco J. Nogales & Raman Uppal, 2009. "A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms," Management Science, INFORMS, vol. 55(5), pages 798-812, May.
    6. Duque, Daniel & Morton, David P. & Pagnoncelli, Bernardo K., 2021. "How good are default investment policies in defined contribution pension plans?," Journal of Pension Economics and Finance, Cambridge University Press, vol. 20(2), pages 252-272, April.
    7. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2005. "There is a risk-return trade-off after all," Journal of Financial Economics, Elsevier, vol. 76(3), pages 509-548, June.
    8. Huifen Chen, 2001. "Initialization for NORTA: Generation of Random Vectors with Specified Marginals and Correlations," INFORMS Journal on Computing, INFORMS, vol. 13(4), pages 312-331, November.
    9. Raj Agrawal & Uma Roy & Caroline Uhler, 2022. "Covariance Matrix Estimation under Total Positivity for Portfolio Selection [Monotone Comparative Statics under Uncertainty]," Journal of Financial Econometrics, Oxford University Press, vol. 20(2), pages 367-389.
    10. Gianluca De Nard & Olivier Ledoit & Michael Wolf, 2021. "Factor Models for Portfolio Selection in Large Dimensions: The Good, the Better and the Ugly [Using Principal Component Analysis to Estimate a High Dimensional Factor Model with High-frequency Data," Journal of Financial Econometrics, Oxford University Press, vol. 19(2), pages 236-257.
    11. Kenneth R. French, 2008. "Presidential Address: The Cost of Active Investing," Journal of Finance, American Finance Association, vol. 63(4), pages 1537-1573, August.
    12. Gah-Yi Ban & Cynthia Rudin, 2019. "The Big Data Newsvendor: Practical Insights from Machine Learning," Operations Research, INFORMS, vol. 67(1), pages 90-108, January.
    13. Fama, Eugene F & French, Kenneth R, 1992. "The Cross-Section of Expected Stock Returns," Journal of Finance, American Finance Association, vol. 47(2), pages 427-465, June.
    14. Panos Xidonas & Ralph Steuer & Christis Hassapis, 2020. "Robust portfolio optimization: a categorized bibliographic review," Annals of Operations Research, Springer, vol. 292(1), pages 533-552, September.
    15. Gah-Yi Ban & Noureddine El Karoui & Andrew E. B. Lim, 2018. "Machine Learning and Portfolio Optimization," Management Science, INFORMS, vol. 64(3), pages 1136-1154, March.
    16. Bernardo K. Pagnoncelli & Felipe del Canto & Arturo Cifuentes, 2021. "The effect of regularization in portfolio selection problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 156-176, April.
    17. Gutierrez, Tomás & Pagnoncelli, Bernardo & Valladão, Davi & Cifuentes, Arturo, 2019. "Can asset allocation limits determine portfolio risk–return profiles in DC pension schemes?," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 134-144.
    18. Dimitris Bertsimas & Nathan Kallus, 2020. "From Predictive to Prescriptive Analytics," Management Science, INFORMS, vol. 66(3), pages 1025-1044, March.
    19. Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.
    20. Xi Bai & Katya Scheinberg & Reha Tutuncu, 2016. "Least-squares approach to risk parity in portfolio selection," Quantitative Finance, Taylor & Francis Journals, vol. 16(3), pages 357-376, March.
    21. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    22. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Viet Anh Nguyen & Fan Zhang & Shanshan Wang & Jose Blanchet & Erick Delage & Yinyu Ye, 2021. "Robustifying Conditional Portfolio Decisions via Optimal Transport," Papers 2103.16451, arXiv.org, revised Apr 2024.
    2. Santos, André Alves Portela & Ferreira, Alexandre R., 2017. "On the choice of covariance specifications for portfolio selection problems," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 37(1), May.
    3. Zhu, Bo & Zhang, Tianlun, 2021. "Long-term wealth growth portfolio allocation under parameter uncertainty: A non-conservative robust approach," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    4. Jos'e-Manuel Pe~na & Fernando Su'arez & Omar Larr'e & Domingo Ram'irez & Arturo Cifuentes, 2023. "A Modified CTGAN-Plus-Features Based Method for Optimal Asset Allocation," Papers 2302.02269, arXiv.org, revised May 2024.
    5. Rad, Hossein & Low, Rand Kwong Yew & Miffre, Joëlle & Faff, Robert, 2020. "Does sophistication of the weighting scheme enhance the performance of long-short commodity portfolios?," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 164-180.
    6. Kei Nakagawa & Masaya Abe & Seiichi Kuroki, 2023. "Doubly Robust Mean-CVaR Portfolio," Papers 2309.11693, arXiv.org.
    7. Nathan Lassance & Frédéric Vrins, 2021. "Minimum Rényi entropy portfolios," Annals of Operations Research, Springer, vol. 299(1), pages 23-46, April.
    8. De Nard, Gianluca & Zhao, Zhao, 2023. "Using, taming or avoiding the factor zoo? A double-shrinkage estimator for covariance matrices," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 23-35.
    9. Harris, Richard D.F. & Stoja, Evarist & Tan, Linzhi, 2017. "The dynamic Black–Litterman approach to asset allocation," European Journal of Operational Research, Elsevier, vol. 259(3), pages 1085-1096.
    10. DeMiguel, Victor & Martin-Utrera, Alberto & Nogales, Francisco J. & Uppal, Raman, 2017. "A Portfolio Perspective on the Multitude of Firm Characteristics," CEPR Discussion Papers 12417, C.E.P.R. Discussion Papers.
    11. Takano, Yuichi & Gotoh, Jun-ya, 2023. "Dynamic portfolio selection with linear control policies for coherent risk minimization," Operations Research Perspectives, Elsevier, vol. 10(C).
    12. Gotoh, Jun-ya & Takeda, Akiko, 2012. "Minimizing loss probability bounds for portfolio selection," European Journal of Operational Research, Elsevier, vol. 217(2), pages 371-380.
    13. Chakrabarti, Deepayan, 2021. "Parameter-free robust optimization for the maximum-Sharpe portfolio problem," European Journal of Operational Research, Elsevier, vol. 293(1), pages 388-399.
    14. Peter Nystrup & Stephen Boyd & Erik Lindström & Henrik Madsen, 2019. "Multi-period portfolio selection with drawdown control," Annals of Operations Research, Springer, vol. 282(1), pages 245-271, November.
    15. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    16. Fan, Jianqing & Liao, Yuan & Shi, Xiaofeng, 2015. "Risks of large portfolios," Journal of Econometrics, Elsevier, vol. 186(2), pages 367-387.
    17. Olivier Ledoit & Michael Wolf, 2022. "Markowitz portfolios under transaction costs," ECON - Working Papers 420, Department of Economics - University of Zurich, revised Sep 2024.
    18. Ammann, Manuel & Coqueret, Guillaume & Schade, Jan-Philip, 2016. "Characteristics-based portfolio choice with leverage constraints," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 23-37.
    19. Karstanje, Dennis & Sojli, Elvira & Tham, Wing Wah & van der Wel, Michel, 2013. "Economic valuation of liquidity timing," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5073-5087.
    20. Ken Kobayashi & Yuichi Takano & Kazuhide Nakata, 2021. "Bilevel cutting-plane algorithm for cardinality-constrained mean-CVaR portfolio optimization," Journal of Global Optimization, Springer, vol. 81(2), pages 493-528, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:62:y:2023:i:1:d:10.1007_s10614-022-10274-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.