IDEAS home Printed from https://ideas.repec.org/a/spr/topjnl/v29y2021i1d10.1007_s11750-020-00578-7.html
   My bibliography  Save this article

The effect of regularization in portfolio selection problems

Author

Listed:
  • Bernardo K. Pagnoncelli

    (Adolfo Ibáñez University)

  • Felipe del Canto

    (Pontificia Universidad Católica de Chile)

  • Arturo Cifuentes

    (Clapes-UC)

Abstract

Portfolio selection problems have been thoroughly studied under the risk-and-return paradigm introduced by Markowitz. However, the usefulness of this approach has been hindered by some practical considerations that have resulted in poorly diversified portfolios, or, solutions that are extremely sensitive to parameter estimation errors. In this work, we use sampling methods to cope with this issue and compare the merits of two approaches: a sample average approximation approach and a performance-based regularization (PBR) method that appeared recently in the literature. We extend PBR by incorporating three different risk metrics—integrated chance-constraints, quantile deviation, and absolute semi-deviation—and deriving the corresponding regularization formulas. Additionally, a numerical comparison using index-based portfolios is presented using historic data that includes the subprime crisis.

Suggested Citation

  • Bernardo K. Pagnoncelli & Felipe del Canto & Arturo Cifuentes, 2021. "The effect of regularization in portfolio selection problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 156-176, April.
  • Handle: RePEc:spr:topjnl:v:29:y:2021:i:1:d:10.1007_s11750-020-00578-7
    DOI: 10.1007/s11750-020-00578-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11750-020-00578-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11750-020-00578-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Frankfurter, George M. & Phillips, Herbert E. & Seagle, John P., 1971. "Portfolio Selection: The Effects of Uncertain Means, Variances, and Covariances," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 6(5), pages 1251-1262, December.
    2. B. Fastrich & S. Paterlini & P. Winker, 2015. "Constructing optimal sparse portfolios using regularization methods," Computational Management Science, Springer, vol. 12(3), pages 417-434, July.
    3. Green, Richard C & Hollifield, Burton, 1992. "When Will Mean-Variance Efficient Portfolios Be Well Diversified?," Journal of Finance, American Finance Association, vol. 47(5), pages 1785-1809, December.
    4. Frost, Peter A. & Savarino, James E., 1986. "An Empirical Bayes Approach to Efficient Portfolio Selection," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 21(3), pages 293-305, September.
    5. Victor DeMiguel & Francisco J. Nogales, 2009. "Portfolio Selection with Robust Estimation," Operations Research, INFORMS, vol. 57(3), pages 560-577, June.
    6. Elton, Edwin J & Gruber, Martin J & Blake, Christopher R, 1996. "The Persistence of Risk-Adjusted Mutual Fund Performance," The Journal of Business, University of Chicago Press, vol. 69(2), pages 133-157, April.
    7. Quaranta, Anna Grazia & Zaffaroni, Alberto, 2008. "Robust optimization of conditional value at risk and portfolio selection," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2046-2056, October.
    8. Homem-de-Mello, Tito & Pagnoncelli, Bernardo K., 2016. "Risk aversion in multistage stochastic programming: A modeling and algorithmic perspective," European Journal of Operational Research, Elsevier, vol. 249(1), pages 188-199.
    9. Andrzej Ruszczyński & Alexander Shapiro, 2006. "Optimization of Convex Risk Functions," Mathematics of Operations Research, INFORMS, vol. 31(3), pages 433-452, August.
    10. Mansini, Renata & Ogryczak, Wlodzimierz & Speranza, M. Grazia, 2014. "Twenty years of linear programming based portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 518-535.
    11. D. Goldfarb & G. Iyengar, 2003. "Robust Portfolio Selection Problems," Mathematics of Operations Research, INFORMS, vol. 28(1), pages 1-38, February.
    12. Stefania Corsaro & Valentina Simone, 2019. "Adaptive $$l_1$$ l 1 -regularization for short-selling control in portfolio selection," Computational Optimization and Applications, Springer, vol. 72(2), pages 457-478, March.
    13. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    14. Dai, Zhifeng & Wen, Fenghua, 2018. "Some improved sparse and stable portfolio optimization problems," Finance Research Letters, Elsevier, vol. 27(C), pages 46-52.
    15. Fernandes, Betina & Street, Alexandre & Valladão, Davi & Fernandes, Cristiano, 2016. "An adaptive robust portfolio optimization model with loss constraints based on data-driven polyhedral uncertainty sets," European Journal of Operational Research, Elsevier, vol. 255(3), pages 961-970.
    16. Malkiel, Burton G, 1995. "Returns from Investing in Equity Mutual Funds 1971 to 1991," Journal of Finance, American Finance Association, vol. 50(2), pages 549-572, June.
    17. Best, Michael J & Grauer, Robert R, 1991. "On the Sensitivity of Mean-Variance-Efficient Portfolios to Changes in Asset Means: Some Analytical and Computational Results," The Review of Financial Studies, Society for Financial Studies, vol. 4(2), pages 315-342.
    18. Jeff Linderoth & Alexander Shapiro & Stephen Wright, 2006. "The empirical behavior of sampling methods for stochastic programming," Annals of Operations Research, Springer, vol. 142(1), pages 215-241, February.
    19. Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bernardo K. Pagnoncelli & Domingo Ramírez & Hamed Rahimian & Arturo Cifuentes, 2023. "A Synthetic Data-Plus-Features Driven Approach for Portfolio Optimization," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 187-204, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Panos Xidonas & Ralph Steuer & Christis Hassapis, 2020. "Robust portfolio optimization: a categorized bibliographic review," Annals of Operations Research, Springer, vol. 292(1), pages 533-552, September.
    2. Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.
    3. Erindi Allaj, 2020. "The Black–Litterman model and views from a reverse optimization procedure: an out-of-sample performance evaluation," Computational Management Science, Springer, vol. 17(3), pages 465-492, October.
    4. Zhifeng Dai & Jie Kang, 2022. "Some new efficient mean–variance portfolio selection models," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4784-4796, October.
    5. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2022. "Robust portfolio selection problems: a comprehensive review," Operational Research, Springer, vol. 22(4), pages 3203-3264, September.
    6. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2021. "Robust Portfolio Selection Problems: A Comprehensive Review," Papers 2103.13806, arXiv.org, revised Jan 2022.
    7. Selim Mankai & Khaled Guesmi, 2014. "Robust Portfolio Protection: A Scenarios-Based Approach," Working Papers hal-04141326, HAL.
    8. Kellerer, Belinda, 2019. "Portfolio Optimization and Ambiguity Aversion," Junior Management Science (JUMS), Junior Management Science e. V., vol. 4(3), pages 305-338.
    9. DeMiguel, Victor & Martin-Utrera, Alberto & Nogales, Francisco J., 2013. "Size matters: Optimal calibration of shrinkage estimators for portfolio selection," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3018-3034.
    10. Yuanyuan Zhang & Xiang Li & Sini Guo, 2018. "Portfolio selection problems with Markowitz’s mean–variance framework: a review of literature," Fuzzy Optimization and Decision Making, Springer, vol. 17(2), pages 125-158, June.
    11. Härdle, Wolfgang & Klochkov, Yegor & Petukhina, Alla & Zhivotovskiy, Nikita, 2021. "Robustifying Markowitz," IRTG 1792 Discussion Papers 2021-018, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    12. Annalisa Fabretti & Stefano Herzel & Mustafa C. Pinar, 2014. "Delegated Portfolio Management under Ambiguity Aversion," CEIS Research Paper 304, Tor Vergata University, CEIS, revised 06 Feb 2014.
    13. Wolfgang Karl Hardle & Yegor Klochkov & Alla Petukhina & Nikita Zhivotovskiy, 2022. "Robustifying Markowitz," Papers 2212.13996, arXiv.org.
    14. Dai, Zhifeng & Wang, Fei, 2019. "Sparse and robust mean–variance portfolio optimization problems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1371-1378.
    15. Petukhina, Alla & Klochkov, Yegor & Härdle, Wolfgang Karl & Zhivotovskiy, Nikita, 2024. "Robustifying Markowitz," Journal of Econometrics, Elsevier, vol. 239(2).
    16. Chakrabarti, Deepayan, 2021. "Parameter-free robust optimization for the maximum-Sharpe portfolio problem," European Journal of Operational Research, Elsevier, vol. 293(1), pages 388-399.
    17. Gah-Yi Ban & Noureddine El Karoui & Andrew E. B. Lim, 2018. "Machine Learning and Portfolio Optimization," Management Science, INFORMS, vol. 64(3), pages 1136-1154, March.
    18. Wang, Christina Dan & Chen, Zhao & Lian, Yimin & Chen, Min, 2022. "Asset selection based on high frequency Sharpe ratio," Journal of Econometrics, Elsevier, vol. 227(1), pages 168-188.
    19. Juan F. Monge & Mercedes Landete & Jos'e L. Ruiz, 2016. "Sharpe portfolio using a cross-efficiency evaluation," Papers 1610.00937, arXiv.org, revised Oct 2016.
    20. Maria Scutellà & Raffaella Recchia, 2013. "Robust portfolio asset allocation and risk measures," Annals of Operations Research, Springer, vol. 204(1), pages 145-169, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:topjnl:v:29:y:2021:i:1:d:10.1007_s11750-020-00578-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.