IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v121y2013icp50-68.html
   My bibliography  Save this article

Support vector machine quantile regression approach for functional data: Simulation and application studies

Author

Listed:
  • Crambes, Christophe
  • Gannoun, Ali
  • Henchiri, Yousri

Abstract

The topic of this paper is related to quantile regression when the covariate is a function. The estimator we are interested in, based on the Support Vector Machine method, was introduced in Crambes et al. (2011) [11]. We improve the results obtained in this former paper, giving a rate of convergence in probability of the estimator. In addition, we give a practical method to construct the estimator, solution of a penalized L1-type minimization problem, using an Iterative Reweighted Least Squares procedure. We evaluate the performance of the estimator in practice through simulations and a real data set study.

Suggested Citation

  • Crambes, Christophe & Gannoun, Ali & Henchiri, Yousri, 2013. "Support vector machine quantile regression approach for functional data: Simulation and application studies," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 50-68.
  • Handle: RePEc:eee:jmvana:v:121:y:2013:i:c:p:50-68
    DOI: 10.1016/j.jmva.2013.06.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X13001164
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2013.06.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eide, Eric & Showalter, Mark H., 1998. "The effect of school quality on student performance: A quantile regression approach," Economics Letters, Elsevier, vol. 58(3), pages 345-350, March.
    2. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    3. Manteiga, Wenceslao Gonzalez & Vieu, Philippe, 2007. "Statistics for Functional Data," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4788-4792, June.
    4. Cardot, Hervé & Ferraty, Frédéric & Sarda, Pascal, 1999. "Functional linear model," Statistics & Probability Letters, Elsevier, vol. 45(1), pages 11-22, October.
    5. Frédéric Ferraty & Philippe Vieu, 2002. "The Functional Nonparametric Model and Application to Spectrometric Data," Computational Statistics, Springer, vol. 17(4), pages 545-564, December.
    6. Roger Koenker & Kevin F. Hallock, 2001. "Quantile Regression," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 143-156, Fall.
    7. Li, Youjuan & Liu, Yufeng & Zhu, Ji, 2007. "Quantile Regression in Reproducing Kernel Hilbert Spaces," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 255-268, March.
    8. Kehui Chen & Hans‐Georg Müller, 2012. "Conditional quantile analysis when covariates are functions, with application to growth data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 74(1), pages 67-89, January.
    9. Azzedine, Nadjia & Laksaci, Ali & Ould-Saïd, Elias, 2008. "On robust nonparametric regression estimation for a functional regressor," Statistics & Probability Letters, Elsevier, vol. 78(18), pages 3216-3221, December.
    10. Crambes, Christophe & Gannoun, Ali & Henchiri, Yousri, 2011. "Weak consistency of the Support Vector Machine Quantile Regression approach when covariates are functions," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1847-1858.
    11. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731, January.
    12. C. Crambes & L. Delsol & A. Laksaci, 2008. "Robust nonparametric estimation for functional data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(7), pages 573-598.
    13. Koenker, Roger & Park, Beum J., 1996. "An interior point algorithm for nonlinear quantile regression," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 265-283.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin Seo Cho & Peter C. B. Phillips & Juwon Seo, 2019. "Parametric Inference on the Mean of Functional Data Applied to Lifetime Income Curves," Working papers 2019rwp-153, Yonsei University, Yonsei Economics Research Institute.
    2. Jin Seo Cho & Meng Huang & Halbert White, 2021. "Testing a Constant Mean Function Using Functional Regression," Working papers 2021rwp-190, Yonsei University, Yonsei Economics Research Institute.
    3. Jin Seo Cho & Peter C. B. Phillips & Juwon Seo, 2023. "Functional Data Inference in a Parametric Quantile Model applied to Lifetime Income Curves," Working papers 2023rwp-211, Yonsei University, Yonsei Economics Research Institute.
    4. Li, Meng & Wang, Kehui & Maity, Arnab & Staicu, Ana-Maria, 2022. "Inference in functional linear quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    5. Jin Seo Cho & Peter C. B. Phillips & Juwon Seo, 2022. "Parametric Conditional Mean Inference With Functional Data Applied To Lifetime Income Curves," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(1), pages 391-456, February.
    6. Christophe Crambes & Ali Gannoun & Yousri Henchiri, 2014. "Modelling functional additive quantile regression using support vector machines approach," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(4), pages 639-668, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Dengdeng & Zhang, Li & Mizera, Ivan & Jiang, Bei & Kong, Linglong, 2019. "Sparse wavelet estimation in quantile regression with multiple functional predictors," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 12-29.
    2. Christophe Crambes & Ali Gannoun & Yousri Henchiri, 2014. "Modelling functional additive quantile regression using support vector machines approach," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(4), pages 639-668, December.
    3. Park, Jinho & Kim, Jeankyung, 2011. "Quantile regression with an epsilon-insensitive loss in a reproducing kernel Hilbert space," Statistics & Probability Letters, Elsevier, vol. 81(1), pages 62-70, January.
    4. Chowdhury, Biplob & Jeyasreedharan, Nagaratnam & Dungey, Mardi, 2018. "Quantile relationships between standard, diffusion and jump betas across Japanese banks," Journal of Asian Economics, Elsevier, vol. 59(C), pages 29-47.
    5. Maria Marino & Alessio Farcomeni, 2015. "Linear quantile regression models for longitudinal experiments: an overview," METRON, Springer;Sapienza Università di Roma, vol. 73(2), pages 229-247, August.
    6. Cristina Davino & Vincenzo Esposito Vinzi, 2016. "Quantile composite-based path modeling," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 10(4), pages 491-520, December.
    7. Zou, Hui & Yuan, Ming, 2008. "Regularized simultaneous model selection in multiple quantiles regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5296-5304, August.
    8. Wu, Chaojiang & Yu, Yan, 2014. "Partially linear modeling of conditional quantiles using penalized splines," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 170-187.
    9. Philip T. Reiss & Jeff Goldsmith & Han Lin Shang & R. Todd Ogden, 2017. "Methods for Scalar-on-Function Regression," International Statistical Review, International Statistical Institute, vol. 85(2), pages 228-249, August.
    10. Bouhlila, Donia Smaali, 2015. "The Heyneman–Loxley effect revisited in the Middle East and North Africa: Analysis using TIMSS 2007 database," International Journal of Educational Development, Elsevier, vol. 42(C), pages 85-95.
    11. Songfeng Zheng, 2014. "A generalized Newton algorithm for quantile regression models," Computational Statistics, Springer, vol. 29(6), pages 1403-1426, December.
    12. Sheng-Tung Chen & Hsiao-I. Kuo & Chi-Chung Chen, 2012. "Estimating the extreme behaviors of students performance using quantile regression -- evidences from Taiwan," Education Economics, Taylor & Francis Journals, vol. 20(1), pages 93-113, December.
    13. Eric Bouye & Mark Salmon, 2009. "Dynamic copula quantile regressions and tail area dynamic dependence in Forex markets," The European Journal of Finance, Taylor & Francis Journals, vol. 15(7-8), pages 721-750.
    14. Komunjer, Ivana, 2013. "Quantile Prediction," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 961-994, Elsevier.
    15. Ma, Lingjie & Koenker, Roger, 2006. "Quantile regression methods for recursive structural equation models," Journal of Econometrics, Elsevier, vol. 134(2), pages 471-506, October.
    16. Muller, Christophe, 2018. "Heterogeneity and nonconstant effect in two-stage quantile regression," Econometrics and Statistics, Elsevier, vol. 8(C), pages 3-12.
    17. Narula, Subhash C. & Wellington, John F. & Lewis, Stephen A., 2012. "Valuating residential real estate using parametric programming," European Journal of Operational Research, Elsevier, vol. 217(1), pages 120-128.
    18. Jean-Marc Fournier & Isabell Koske, 2012. "The determinants of earnings inequality: evidence from quantile regressions," OECD Journal: Economic Studies, OECD Publishing, vol. 2012(1), pages 7-36.
    19. Duschl, Matthias & Schimke, Antje & Brenner, Thomas & Luxen, Dennis, 2011. "Firm growth and the spatial impact of geolocated external factors: Empirical evidence for German manufacturing firms," Working Paper Series in Economics 36, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
    20. David E. Allen & Abhay K. Singh & Robert J. Powell & Michael McAleer & James Taylor & Lyn Thomas, 2013. "Return-Volatility Relationship: Insights from Linear and Non-Linear Quantile Regression," Tinbergen Institute Discussion Papers 13-020/III, Tinbergen Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:121:y:2013:i:c:p:50-68. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.