IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v81y2011i12p1847-1858.html
   My bibliography  Save this article

Weak consistency of the Support Vector Machine Quantile Regression approach when covariates are functions

Author

Listed:
  • Crambes, Christophe
  • Gannoun, Ali
  • Henchiri, Yousri

Abstract

This paper deals with a nonparametric estimation of conditional quantile regression when the explanatory variable X takes its values in a bounded subspace of a functional space X and the response Y takes its values in a compact of the space Y≔R. The functional observations, X1,…,Xn, are projected onto a finite dimensional subspace having a suitable orthonormal system. The Xi’s will be characterized by their coordinates in this basis. We perform the Support Vector Machine Quantile Regression approach in finite dimension with the selected coefficients. Then we establish weak consistency of this estimator. The various parameters needed for the construction of this estimator are automatically selected by data-splitting and by penalized empirical risk minimization.

Suggested Citation

  • Crambes, Christophe & Gannoun, Ali & Henchiri, Yousri, 2011. "Weak consistency of the Support Vector Machine Quantile Regression approach when covariates are functions," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1847-1858.
  • Handle: RePEc:eee:stapro:v:81:y:2011:i:12:p:1847-1858
    DOI: 10.1016/j.spl.2011.07.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715211002392
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    2. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731.
    3. Li, Youjuan & Liu, Yufeng & Zhu, Ji, 2007. "Quantile Regression in Reproducing Kernel Hilbert Spaces," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 255-268, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Crambes, Christophe & Gannoun, Ali & Henchiri, Yousri, 2013. "Support vector machine quantile regression approach for functional data: Simulation and application studies," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 50-68.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:81:y:2011:i:12:p:1847-1858. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.