IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v51y2007i12p5949-5957.html
   My bibliography  Save this article

Inference via kernel smoothing of bootstrap P values

Author

Listed:
  • Racine, Jeffrey S.
  • MacKinnon, James G.

Abstract

Resampling methods such as the bootstrap are routinely used to estimate the finite-sample null distributions of a range of test statistics. We present a simple and tractable way to perform classical hypothesis tests based upon a kernel estimate of the CDF of the bootstrap statistics. This approach has a number of appealing features: i) it can perform well when the number of bootstraps is extremely small, ii) it is approximately exact, and iii) it can yield substantial power gains relative to the conventional approach. The proposed approach is likely to be useful when the statistic being bootstrapped is computationally expensive.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Racine, Jeffrey S. & MacKinnon, James G., 2007. "Inference via kernel smoothing of bootstrap P values," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5949-5957, August.
  • Handle: RePEc:eee:csdana:v:51:y:2007:i:12:p:5949-5957
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(06)00435-X
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Russell Davidson & James MacKinnon, 2000. "Bootstrap tests: how many bootstraps?," Econometric Reviews, Taylor & Francis Journals, vol. 19(1), pages 55-68.
    2. Jeff Racine & James G. MacKinnon, 2004. "Simulation-based Tests that Can Use Any Number of Simulations," Working Papers 1027, Queen's University, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Charlotte Cabane & Adrian Hille & Michael Lechner, 2015. "Mozart or Pelé? The Effects of Teenagers' Participation in Music and Sports," SOEPpapers on Multidisciplinary Panel Data Research 749, DIW Berlin, The German Socio-Economic Panel (SOEP).
    2. repec:tpr:restat:v:99:y:2017:i:1:p:180-183 is not listed on IDEAS
    3. Pawlowski, Tim & Schüttoff, Ute & Downward, Paul & Lechner, Michael, 2014. "Sport participation and Child Development in Less Developed Countries," Economics Working Paper Series 1433, University of St. Gallen, School of Economics and Political Science.
    4. Michael Lechner & Paul Downward, 2017. "Heterogeneous sports participation and labour market outcomes in England," Applied Economics, Taylor & Francis Journals, vol. 49(4), pages 335-348, January.
    5. Pawlowski, Tim & Schüttoff, Ute & Downward, Paul & Lechner, Michael, 2014. "Children’s skill formation in less developed countries – The impact of sports participation," Economics Working Paper Series 1412, University of St. Gallen, School of Economics and Political Science.
    6. Martin Huber & Michael Lechner & Giovanni Mellace, 2017. "Why Do Tougher Caseworkers Increase Employment? The Role of Program Assignment as a Causal Mechanism," The Review of Economics and Statistics, MIT Press, vol. 99(1), pages 180-183, March.
    7. Bodory, Hugo & Camponovo, Lorenzo & Huber, Martin & Lechner, Michael, 2016. "The finite sample performance of inference methods for propensity score matching and weighting estimators," Economics Working Paper Series 1604, University of St. Gallen, School of Economics and Political Science.
    8. Patrick Richard, 2010. "Kernel smoothing end of sample instability tests P values," Cahiers de recherche 10-19, Departement d'Economique de l'École de gestion à l'Université de Sherbrooke.
    9. James G. MacKinnon, 2007. "Bootstrap Hypothesis Testing," Working Papers 1127, Queen's University, Department of Economics.

    More about this item

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:51:y:2007:i:12:p:5949-5957. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/csda .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.