IDEAS home Printed from https://ideas.repec.org/p/shr/wpaper/10-19.html
   My bibliography  Save this paper

Kernel smoothing end of sample instability tests P values

Author

Listed:
  • Patrick Richard

    (GREDI, Département d'économique, Université de Sherbrooke)

Abstract

A Monte Carlo investigation shows that the rejection probability of the structural stability test of Andrews (2003) depends on several characteristics of the DGP, one of which is the length of the hypothesized break period. This is analyzed and found to be caused, at least in part, by the fact that the number of subsampling statistics used to compute the P value depends on the sample size and the length of the break period. Simulations show that kernel smoothed P values provide more accurate tests in small samples.

Suggested Citation

  • Patrick Richard, 2010. "Kernel smoothing end of sample instability tests P values," Cahiers de recherche 10-19, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
  • Handle: RePEc:shr:wpaper:10-19
    as

    Download full text from publisher

    File URL: http://gredi.recherche.usherbrooke.ca/wpapers/GREDI-1019.pdf
    File Function: First version, 2010
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. D. W. K. Andrews, 2003. "End-of-Sample Instability Tests," Econometrica, Econometric Society, vol. 71(6), pages 1661-1694, November.
    2. Racine, Jeff & MacKinnon, James, 2006. "Inference via Kernel Smoothing of Bootstrap P Values," Queen's Economics Department Working Papers 273530, Queen's University - Department of Economics.
    3. Davidson, Russell & MacKinnon, James, 2001. "Bootstrap Tests: How Many Bootstraps?," Queen's Economics Department Working Papers 273506, Queen's University - Department of Economics.
    4. Dufour, Jean-Marie & Ghysels, Eric & Hall, Alastair, 1994. "Generalized Predictive Tests and Structural Change Analysis in Econometrics," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(1), pages 199-229, February.
    5. Russell Davidson & James MacKinnon, 2000. "Bootstrap tests: how many bootstraps?," Econometric Reviews, Taylor & Francis Journals, vol. 19(1), pages 55-68.
    6. Racine, Jeffrey S. & MacKinnon, James G., 2007. "Inference via kernel smoothing of bootstrap P values," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5949-5957, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. MacKinnon, James, 2007. "Bootstrap Hypothesis Testing," Queen's Economics Department Working Papers 273603, Queen's University - Department of Economics.
    2. MacKinnon, James, 2007. "Bootstrap Hypothesis Testing," Queen's Economics Department Working Papers 273603, Queen's University - Department of Economics.
    3. M.L. Nores & M.P. Díaz, 2016. "Bootstrap hypothesis testing in generalized additive models for comparing curves of treatments in longitudinal studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(5), pages 810-826, April.
    4. Charlotte Cabane & Adrian Hille & Michael Lechner, 2015. "Mozart or Pelé? The Effects of Teenagers' Participation in Music and Sports," SOEPpapers on Multidisciplinary Panel Data Research 749, DIW Berlin, The German Socio-Economic Panel (SOEP).
    5. John M. Maheu & Stephen Gordon, 2008. "Learning, forecasting and structural breaks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(5), pages 553-583.
    6. Johannesson Magnus & Östling Robert & Ranehill Eva, 2010. "The Effect of Competition on Physical Activity: A Randomized Trial," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 10(1), pages 1-31, September.
    7. Daiki Maki & Yasushi Ota, 2021. "Testing for Time-Varying Properties Under Misspecified Conditional Mean and Variance," Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1167-1182, April.
    8. Wen Shi & Xi Chen & Jennifer Shang, 2019. "An Efficient Morris Method-Based Framework for Simulation Factor Screening," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 745-770, October.
    9. Ahlgren, N. & Antell, J., 2008. "Bootstrap and fast double bootstrap tests of cointegration rank with financial time series," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4754-4767, June.
    10. Alain Guay, 2020. "Identification of Structural Vector Autoregressions Through Higher Unconditional Moments," Working Papers 20-19, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management.
    11. repec:ebl:ecbull:v:30:y:2010:i:1:p:55-66 is not listed on IDEAS
    12. Dong Ding & Axel Gandy & Georg Hahn, 2020. "A simple method for implementing Monte Carlo tests," Computational Statistics, Springer, vol. 35(3), pages 1373-1392, September.
    13. Davidson, Russell, 2009. "Reliable inference for the Gini index," Journal of Econometrics, Elsevier, vol. 150(1), pages 30-40, May.
    14. Sarlin, Peter & von Schweinitz, Gregor, 2021. "Optimizing Policymakers’ Loss Functions In Crisis Prediction: Before, Within Or After?," Macroeconomic Dynamics, Cambridge University Press, vol. 25(1), pages 100-123, January.
    15. Kundhi, Gubhinder & Rilstone, Paul, 2012. "Edgeworth expansions for GEL estimators," Journal of Multivariate Analysis, Elsevier, vol. 106(C), pages 118-146.
    16. Strikholm, Birgit & Teräsvirta, Timo, 2005. "Determining the Number of Regimes in a Threshold Autoregressive Model Using Smooth Transition Autoregressions," SSE/EFI Working Paper Series in Economics and Finance 578, Stockholm School of Economics, revised 11 Feb 2005.
    17. Matos, José M.A. & Ramos, Sandra & Costa, Vítor, 2019. "Stochastic simulated rents in Portuguese public-private partnerships," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 107-117.
    18. Emmanuel Flachaire, 2000. "Les méthodes du bootstrap dans les modèles de régression," Économie et Prévision, Programme National Persée, vol. 142(1), pages 183-194.
    19. Beutel, Johannes & List, Sophia & von Schweinitz, Gregor, 2019. "Does machine learning help us predict banking crises?," Journal of Financial Stability, Elsevier, vol. 45(C).
    20. Martin Huber & Michael Lechner & Giovanni Mellace, 2017. "Why Do Tougher Caseworkers Increase Employment? The Role of Program Assignment as a Causal Mechanism," The Review of Economics and Statistics, MIT Press, vol. 99(1), pages 180-183, March.
    21. Francis, Bill B. & Mougoué, Mbodja & Panchenko, Valentyn, 2010. "Is there a symmetric nonlinear causal relationship between large and small firms?," Journal of Empirical Finance, Elsevier, vol. 17(1), pages 23-38, January.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:shr:wpaper:10-19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jean-François Rouillard (email available below). General contact details of provider: https://edirc.repec.org/data/deushca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.