IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v44y2004i4p625-638.html
   My bibliography  Save this article

Outlier detection in the multiple cluster setting using the minimum covariance determinant estimator

Author

Listed:
  • Hardin, Johanna
  • Rocke, David M.

Abstract

No abstract is available for this item.

Suggested Citation

  • Hardin, Johanna & Rocke, David M., 2004. "Outlier detection in the multiple cluster setting using the minimum covariance determinant estimator," Computational Statistics & Data Analysis, Elsevier, vol. 44(4), pages 625-638, January.
  • Handle: RePEc:eee:csdana:v:44:y:2004:i:4:p:625-638
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(02)00280-3
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Croux, Christophe & Haesbroeck, Gentiane, 1999. "Influence Function and Efficiency of the Minimum Covariance Determinant Scatter Matrix Estimator," Journal of Multivariate Analysis, Elsevier, vol. 71(2), pages 161-190, November.
    2. Hawkins, Douglas M. & Olive, David J., 1999. "Improved feasible solution algorithms for high breakdown estimation," Computational Statistics & Data Analysis, Elsevier, vol. 30(1), pages 1-11, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gottard, Anna & Pacillo, Simona, 2010. "Robust concentration graph model selection," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3070-3079, December.
    2. Alexander A. Aduenko & Anastasia P. Motrenko & Vadim V. Strijov, 2018. "Object selection in credit scoring using covariance matrix of parameters estimations," Annals of Operations Research, Springer, vol. 260(1), pages 3-21, January.
    3. Michael S. Delgado & Daniel J. Henderson & Christopher F. Parmeter, 2014. "Does Education Matter for Economic Growth?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(3), pages 334-359, June.
    4. Chrys Caroni & Nedret Billor, 2007. "Robust Detection of Multiple Outliers in Grouped Multivariate Data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 34(10), pages 1241-1250.
    5. Neykov, N. & Filzmoser, P. & Dimova, R. & Neytchev, P., 2007. "Robust fitting of mixtures using the trimmed likelihood estimator," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 299-308, September.
    6. Garcia-Escudero, L.A. & Gordaliza, A., 2007. "The importance of the scales in heterogeneous robust clustering," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4403-4412, May.
    7. Alper Sinan & B. Barıs Alkan, 2015. "A useful approach to identify the multicollinearity in the presence of outliers," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(5), pages 986-993, May.
    8. Alessio Farcomeni, 2009. "Robust Double Clustering: A Method Based on Alternating Concentration Steps," Journal of Classification, Springer;The Classification Society, vol. 26(1), pages 77-101, April.
    9. Van Aelst, Stefan & (Steven) Wang, Xiaogang & Zamar, Ruben H. & Zhu, Rong, 2006. "Linear grouping using orthogonal regression," Computational Statistics & Data Analysis, Elsevier, vol. 50(5), pages 1287-1312, March.
    10. Dolia, A.N. & Harris, C.J. & Shawe-Taylor, J.S. & Titterington, D.M., 2007. "Kernel ellipsoidal trimming," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 309-324, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. L. Alfaro & J. Fco. Ortega, 2009. "A comparison of robust alternatives to Hotelling's T2 control chart," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(12), pages 1385-1396.
    2. Garcia-Escudero, L.A. & Gordaliza, A., 2007. "The importance of the scales in heterogeneous robust clustering," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4403-4412, May.
    3. L. Pitsoulis & G. Zioutas, 2010. "A fast algorithm for robust regression with penalised trimmed squares," Computational Statistics, Springer, vol. 25(4), pages 663-689, December.
    4. Nunkesser, Robin & Morell, Oliver, 2010. "An evolutionary algorithm for robust regression," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3242-3248, December.
    5. Steffen Liebscher & Thomas Kirschstein, 2015. "Efficiency of the pMST and RDELA location and scatter estimators," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(1), pages 63-82, January.
    6. Vanessa Berenguer-Rico & Søren Johansen & Bent Nielsen, 2019. "Models where the Least Trimmed Squares and Least Median of Squares estimators are maximum likelihood," CREATES Research Papers 2019-15, Department of Economics and Business Economics, Aarhus University.
    7. Cheng, Tsung-Chi, 2012. "On simultaneously identifying outliers and heteroscedasticity without specific form," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2258-2272.
    8. Pison, Greet & Rousseeuw, Peter J. & Filzmoser, Peter & Croux, Christophe, 2003. "Robust factor analysis," Journal of Multivariate Analysis, Elsevier, vol. 84(1), pages 145-172, January.
    9. Marco Riani & Anthony C. Atkinson & Andrea Cerioli, 2009. "Finding an unknown number of multivariate outliers," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 447-466, April.
    10. Gervini, Daniel, 2003. "A robust and efficient adaptive reweighted estimator of multivariate location and scatter," Journal of Multivariate Analysis, Elsevier, vol. 84(1), pages 116-144, January.
    11. Zhou, Jianhui, 2009. "Robust dimension reduction based on canonical correlation," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 195-209, January.
    12. Yunlu Jiang & Canhong Wen & Xueqin Wang, 2018. "Adaptive Exponential Power Depth with Application to Classification," Journal of Classification, Springer;The Classification Society, vol. 35(3), pages 466-480, October.
    13. Selin Ahipaşaoğlu, 2015. "Fast algorithms for the minimum volume estimator," Journal of Global Optimization, Springer, vol. 62(2), pages 351-370, June.
    14. Cerioli, Andrea & Farcomeni, Alessio & Riani, Marco, 2014. "Strong consistency and robustness of the Forward Search estimator of multivariate location and scatter," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 167-183.
    15. Marco Riani & Andrea Cerioli & Francesca Torti, 2014. "On consistency factors and efficiency of robust S-estimators," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 356-387, June.
    16. Taskinen, Sara & Croux, Christophe & Kankainen, Annaliisa & Ollila, Esa & Oja, Hannu, 2006. "Influence functions and efficiencies of the canonical correlation and vector estimates based on scatter and shape matrices," Journal of Multivariate Analysis, Elsevier, vol. 97(2), pages 359-384, February.
    17. Fekri, M. & Ruiz-Gazen, A., 2004. "Robust weighted orthogonal regression in the errors-in-variables model," Journal of Multivariate Analysis, Elsevier, vol. 88(1), pages 89-108, January.
    18. Nunkesser, Robin & Morell, Oliver, 2008. "Evolutionary algorithms for robust methods," Technical Reports 2008,29, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    19. Ranganai, Edmore, 2016. "Quality of fit measurement in regression quantiles: An elemental set method approach," Statistics & Probability Letters, Elsevier, vol. 111(C), pages 18-25.
    20. Miyamura, Masashi & Kano, Yutaka, 2006. "Robust Gaussian graphical modeling," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1525-1550, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:44:y:2004:i:4:p:625-638. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/locate/csda .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.