IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v100y2009i1p195-209.html
   My bibliography  Save this article

Robust dimension reduction based on canonical correlation

Author

Listed:
  • Zhou, Jianhui

Abstract

The canonical correlation (CANCOR) method for dimension reduction in a regression setting is based on the classical estimates of the first and second moments of the data, and therefore sensitive to outliers. In this paper, we study a weighted canonical correlation (WCANCOR) method, which captures a subspace of the central dimension reduction subspace, as well as its asymptotic properties. In the proposed WCANCOR method, each observation is weighted based on its Mahalanobis distance to the location of the predictor distribution. Robust estimates of the location and scatter, such as the minimum covariance determinant (MCD) estimator of Rousseeuw [P.J. Rousseeuw, Multivariate estimation with high breakdown point, Mathematical Statistics and Applications B (1985) 283-297], can be used to compute the Mahalanobis distance. To determine the number of significant dimensions in WCANCOR, a weighted permutation test is considered. A comparison of SIR, CANCOR and WCANCOR is also made through simulation studies to show the robustness of WCANCOR to outlying observations. As an example, the Boston housing data is analyzed using the proposed WCANCOR method.

Suggested Citation

  • Zhou, Jianhui, 2009. "Robust dimension reduction based on canonical correlation," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 195-209, January.
  • Handle: RePEc:eee:jmvana:v:100:y:2009:i:1:p:195-209
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(08)00108-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Croux, Christophe & Haesbroeck, Gentiane, 1999. "Influence Function and Efficiency of the Minimum Covariance Determinant Scatter Matrix Estimator," Journal of Multivariate Analysis, Elsevier, vol. 71(2), pages 161-190, November.
    2. Pires, Ana M. & Branco, João A., 2002. "Partial Influence Functions," Journal of Multivariate Analysis, Elsevier, vol. 83(2), pages 451-468, November.
    3. Taskinen, Sara & Croux, Christophe & Kankainen, Annaliisa & Ollila, Esa & Oja, Hannu, 2006. "Influence functions and efficiencies of the canonical correlation and vector estimates based on scatter and shape matrices," Journal of Multivariate Analysis, Elsevier, vol. 97(2), pages 359-384, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrea Bergesio & María Eugenia Szretter Noste & Víctor J. Yohai, 2021. "A robust proposal of estimation for the sufficient dimension reduction problem," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 758-783, September.
    2. Guochang Wang & Jianjun Zhou & Wuqing Wu & Min Chen, 2017. "Robust functional sliced inverse regression," Statistical Papers, Springer, vol. 58(1), pages 227-245, March.
    3. Lan Xue & Jing Wang, 2010. "Distribution function estimation by constrained polynomial spline regression," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(4), pages 443-457.
    4. Dong, Yuexiao & Yu, Zhou & Zhu, Liping, 2015. "Robust inverse regression for dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 134(C), pages 71-81.
    5. Chiancone, Alessandro & Forbes, Florence & Girard, Stéphane, 2017. "Student Sliced Inverse Regression," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 441-456.
    6. Cator, Eric A. & Lopuhaä, Hendrik P., 2010. "Asymptotic expansion of the minimum covariance determinant estimators," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2372-2388, November.
    7. Zhou, Jingke & Xu, Wangli & Zhu, Lixing, 2015. "Robust estimating equation-based sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 134(C), pages 99-118.
    8. Zhou, Jingke & Zhu, Lixing, 2016. "Principal minimax support vector machine for sufficient dimension reduction with contaminated data," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 33-48.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paindaveine, Davy & Van Bever, Germain, 2014. "Inference on the shape of elliptical distributions based on the MCD," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 125-144.
    2. Croux, Christophe & Joossens, Kristel, 2005. "Influence of observations on the misclassification probability in quadratic discriminant analysis," Journal of Multivariate Analysis, Elsevier, vol. 96(2), pages 384-403, October.
    3. Cator, Eric A. & Lopuhaä, Hendrik P., 2010. "Asymptotic expansion of the minimum covariance determinant estimators," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2372-2388, November.
    4. Stephanie Aerts & Gentiane Haesbroeck, 2017. "Robust asymptotic tests for the equality of multivariate coefficients of variation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 163-187, March.
    5. Frahm, Gabriel, 2009. "Asymptotic distributions of robust shape matrices and scales," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1329-1337, August.
    6. Dürre, Alexander & Vogel, Daniel & Fried, Roland, 2015. "Spatial sign correlation," Journal of Multivariate Analysis, Elsevier, vol. 135(C), pages 89-105.
    7. Davy Paindaveine & Germain Van Bever, 2013. "Inference on the Shape of Elliptical Distribution Based on the MCD," Working Papers ECARES ECARES 2013-27, ULB -- Universite Libre de Bruxelles.
    8. Steffen Liebscher & Thomas Kirschstein, 2015. "Efficiency of the pMST and RDELA location and scatter estimators," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(1), pages 63-82, January.
    9. Cheng, Tsung-Chi, 2012. "On simultaneously identifying outliers and heteroscedasticity without specific form," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2258-2272.
    10. Marco Riani & Anthony C. Atkinson & Andrea Cerioli, 2009. "Finding an unknown number of multivariate outliers," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 447-466, April.
    11. Gervini, Daniel, 2003. "A robust and efficient adaptive reweighted estimator of multivariate location and scatter," Journal of Multivariate Analysis, Elsevier, vol. 84(1), pages 116-144, January.
    12. Sharifah Soaad Syed Yahaya & Hazlina Ali & Zurni Omar, 2011. "An Alternative Hotelling T^2 Control Chart Based on Minimum Vector Variance (MVV)," Modern Applied Science, Canadian Center of Science and Education, vol. 5(4), pages 132-132, August.
    13. Graciela Boente & Frank Critchley & Liliana Orellana, 2007. "Influence functions of two families of robust estimators under proportional scatter matrices," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(3), pages 295-327, February.
    14. Bianco, Ana & Boente, Graciela & Pires, Ana M. & Rodrigues, Isabel M., 2008. "Robust discrimination under a hierarchy on the scatter matrices," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1332-1357, July.
    15. Alvarez, Agustín & Boente, Graciela & Kudraszow, Nadia, 2019. "Robust sieve estimators for functional canonical correlation analysis," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 46-62.
    16. Marco Riani & Andrea Cerioli & Francesca Torti, 2014. "On consistency factors and efficiency of robust S-estimators," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 356-387, June.
    17. Taskinen, Sara & Croux, Christophe & Kankainen, Annaliisa & Ollila, Esa & Oja, Hannu, 2006. "Influence functions and efficiencies of the canonical correlation and vector estimates based on scatter and shape matrices," Journal of Multivariate Analysis, Elsevier, vol. 97(2), pages 359-384, February.
    18. A. García-Pérez, 2012. "A linear approximation to the power function of a test," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(7), pages 855-875, October.
    19. Boente, Graciela & Molina, Julieta & Sued, Mariela, 2010. "On the asymptotic behavior of general projection-pursuit estimators under the common principal components model," Statistics & Probability Letters, Elsevier, vol. 80(3-4), pages 228-235, February.
    20. Fekri, M. & Ruiz-Gazen, A., 2004. "Robust weighted orthogonal regression in the errors-in-variables model," Journal of Multivariate Analysis, Elsevier, vol. 88(1), pages 89-108, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:100:y:2009:i:1:p:195-209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.