IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

A linear approximation to the power function of a test

Listed author(s):
  • A. García-Pérez


Registered author(s):

    In this paper we obtain a linear approximation to the power function of a test that is very accurate for small sample sizes. This is especially useful for robust tests where not many power functions are available. The approximation is based on the von Mises expansion of the tail probability functional and on the Tail Area Influence Function (TAIF). The goals of the paper are, first to extend the definition of the TAIF to the case of non identically distributed random variables, defining the Partial Tail Area Influence Functions and the Vectorial Tail Area Influence Function; second, to obtain exact expressions for computing these new influence functions; and, finally, to find accurate approximations to the power function, that can be used in the case of non identically distributed random variables. We include some examples of the application of this linear approximation to tests that involve the Huber statistic and also saddlepoint tests, so proving that the approximations apply not only to simple problems but also to complex ones. Copyright Springer-Verlag 2012

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Springer in its journal Metrika.

    Volume (Year): 75 (2012)
    Issue (Month): 7 (October)
    Pages: 855-875

    in new window

    Handle: RePEc:spr:metrik:v:75:y:2012:i:7:p:855-875
    DOI: 10.1007/s00184-011-0356-6
    Contact details of provider: Web page:

    Order Information: Web:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Lô, Serigne N. & Ronchetti, Elvezio, 2009. "Robust and accurate inference for generalized linear models," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2126-2136, October.
    2. Pires, Ana M. & Branco, João A., 2002. "Partial Influence Functions," Journal of Multivariate Analysis, Elsevier, vol. 83(2), pages 451-468, November.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:75:y:2012:i:7:p:855-875. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla)

    or (Rebekah McClure)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.