IDEAS home Printed from https://ideas.repec.org/p/kud/kuiedp/1911.html
   My bibliography  Save this paper

Models where the Least Trimmed Squares and Least Median of Squares estimators are maximum likelihood

Author

Listed:
  • Vanessa Berenguer-Rico

    (Department of Economics, University of Oxford)

  • Søren Johansen

    (Department of Economics, University of Copenhagen, Denmark)

  • Bent Nielsen

    (Department of Economics, University of Oxford)

Abstract

The Least Trimmed Squares (LTS) and Least Median of Squares (LMS) estimators are popular robust regression estimators. The idea behind the estimators is to fi?nd, for a given h; a sub-sample of h '?good' ?observations among n observations and estimate the regression on that sub-sample. We fi?nd models, based on the normal or the uniform distribution respectively, in which these estimators are maximum likelihood. We provide an asymptotic theory for the location-scale case in those models. The LTS estimator is found to be h1/2 consistent and asymptotically standard normal. The LMS estimator is found to be h consistent and asymptotically Laplace.

Suggested Citation

  • Vanessa Berenguer-Rico & Søren Johansen & Bent Nielsen, 2019. "Models where the Least Trimmed Squares and Least Median of Squares estimators are maximum likelihood," Discussion Papers 19-11, University of Copenhagen. Department of Economics.
  • Handle: RePEc:kud:kuiedp:1911
    as

    Download full text from publisher

    File URL: https://www.economics.ku.dk/research/publications/wp/dp_2019/1911.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Davidson, James, 1994. "Stochastic Limit Theory: An Introduction for Econometricians," OUP Catalogue, Oxford University Press, number 9780198774037.
    2. Jurgen A. Doornik, 2016. "An Example of Instability: Discussion of the Paper by Søren Johansen and Bent Nielsen," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 357-359, June.
    3. Vanessa Berenguer Rico & Ines Wilms, 2018. "White heteroscedasticty testing after outlier removal," Economics Series Working Papers 853, University of Oxford, Department of Economics.
    4. Vanessa Berenguer-Rico & Søren Johansen & Bent Nielsen, 2019. "Uniform Consistency of Marked and Weighted Empirical Distributions of Residuals," CREATES Research Papers 2019-12, Department of Economics and Business Economics, Aarhus University.
    5. Rousseeuw, Peter & Perrotta, Domenico & Riani, Marco & Hubert, Mia, 2019. "Robust Monitoring of Time Series with Application to Fraud Detection," Econometrics and Statistics, Elsevier, vol. 9(C), pages 108-121.
    6. Jurgen A. Doornik & David F. Hendry, 2016. "Outliers and Model Selection: Discussion of the Paper by Søren Johansen and Bent Nielsen," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 360-365, June.
    7. Vanessa Berenguer Rico & Bent Nielsen, 2017. "Marked and Weighted Empirical Processes of Residuals with Applications to Robust Regressions," Economics Series Working Papers 841, University of Oxford, Department of Economics.
    8. Hawkins, Douglas M. & Olive, David J., 1999. "Improved feasible solution algorithms for high breakdown estimation," Computational Statistics & Data Analysis, Elsevier, vol. 30(1), pages 1-11, March.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Chebychev estimator; LMS; Uniform distribution; Least squares estimator; LTS; Normal distribution; Regression; Robust statistics;

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kud:kuiedp:1911. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Thomas Hoffmann). General contact details of provider: http://edirc.repec.org/data/okokudk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.