IDEAS home Printed from
   My bibliography  Save this article

Implementation of energy efficiency standards of household refrigerator/freezer in China: Potential environmental and economic impacts


  • Tao, Jing
  • Yu, Suiran


Due to the rapid economic development, living standards in China are improving fast. Chinese families are having more household electrical appliances, among which refrigerators are indispensable. Energy consumption of refrigerators is huge in China and causes environmental concerns. China has issued the national energy efficiency standards of household refrigerators, GB12021.2-2003 and GB12021.2-2008 to promote high-efficiency refrigerator production and use. This study evaluated the impacts of the standards on the environment, manufacturers and consumers over a long-term period of 2003-2023. It first evaluated the potential electricity conservation and GHG emission reduction resulting from energy efficiency improvements driven by the standards. Next, manufacturers' technological and economic concerns about complying with the standards were discussed. Some efficiency improving design options were considered and the resulting increases in manufacturing cost and retail price were estimated. The return of consumers from invest in efficiency was analyzed based on lifecycle cost saving of the improved models. The economical viability of the standards was then evaluated by national consumer costs and benefits. Results showed that the considered efficiency standards will potentially save a cumulative total of 588-1180Â TWh electricity, and reduce emission of 629-1260Â million tons of CO2, 4.00-8.04Â million tons of SOx and 2.37-4.76Â million tons of NOx by 2023, depending on sale share of models by efficiency. In a more environmentally optimal case (75% sale share of high-efficiency models), the national consumer benefits are 121Â billion RMB (discounted), with the benefit/cost ratio of consumer's expenditure being 1.45:1. However, the preference to high-efficiency models is substantial influenced by consumer's expectation on return from the additional cost on efficiency.

Suggested Citation

  • Tao, Jing & Yu, Suiran, 2011. "Implementation of energy efficiency standards of household refrigerator/freezer in China: Potential environmental and economic impacts," Applied Energy, Elsevier, vol. 88(5), pages 1890-1905, May.
  • Handle: RePEc:eee:appene:v:88:y:2011:i:5:p:1890-1905

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, September.
    2. Kenneth E. Train & Terry Atherton, 1995. "Rebates, Loans, and Customers' Choice of Appliance Efficiency Level: Combining Stated- and Revealed-Preference Data," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 55-70.
    3. Meyers, S & McMahon, J.E & McNeil, M & Liu, X, 2003. "Impacts of US federal energy efficiency standards for residential appliances," Energy, Elsevier, vol. 28(8), pages 755-767.
    4. Masjuki, H.H & Saidur, R & Choudhury, I.A & Mahlia, T.M.I & Ghani, A.K & Maleque, M.A, 2001. "The applicability of ISO household refrigerator–freezer energy test specifications in Malaysia," Energy, Elsevier, vol. 26(7), pages 723-737.
    5. Dianshu, Feng & Sovacool, Benjamin K. & Minh Vu, Khuong, 2010. "The barriers to energy efficiency in China: Assessing household electricity savings and consumer behavior in Liaoning Province," Energy Policy, Elsevier, vol. 38(2), pages 1202-1209, February.
    6. Meier, Alan K. & Whittier, Jack, 1983. "Consumer discount rates implied by purchases of energy-efficient refrigerators," Energy, Elsevier, vol. 8(12), pages 957-962.
    7. Steenhof, Paul A., 2007. "Decomposition for emission baseline setting in China's electricity sector," Energy Policy, Elsevier, vol. 35(1), pages 280-294, January.
    8. Lu, Wei, 2006. "Potential energy savings and environmental impact by implementing energy efficiency standard for household refrigerators in China," Energy Policy, Elsevier, vol. 34(13), pages 1583-1589, September.
    9. Wiel, Stephen & McMahon, James E., 2003. "Governments should implement energy-efficiency standards and labels--cautiously," Energy Policy, Elsevier, vol. 31(13), pages 1403-1415, October.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Wang, Zhaohua & Liu, Wei, 2015. "Determinants of CO2 emissions from household daily travel in Beijing, China: Individual travel characteristic perspectives," Applied Energy, Elsevier, vol. 158(C), pages 292-299.
    2. Jia, Jun-Jun & Xu, Jin-Hua & Fan, Ying & Ji, Qiang, 2018. "Willingness to accept energy-saving measures and adoption barriers in the residential sector: An empirical analysis in Beijing, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 56-73.
    3. Zhao, Xiaoli & Li, Na & Ma, Chunbo, 2012. "Residential energy consumption in urban China: A decomposition analysis," Energy Policy, Elsevier, vol. 41(C), pages 644-653.
    4. Cagno, Enrico & Trianni, Andrea, 2013. "Exploring drivers for energy efficiency within small- and medium-sized enterprises: First evidences from Italian manufacturing enterprises," Applied Energy, Elsevier, vol. 104(C), pages 276-285.
    5. Gómez, Antonio & Dopazo, César & Fueyo, Norberto, 2014. "The causes of the high energy intensity of the Kazakh economy: A characterization of its energy system," Energy, Elsevier, vol. 71(C), pages 556-568.
    6. Shi, Xunpeng, 2015. "Application of best practice for setting minimum energy efficiency standards in technically disadvantaged countries: Case study of Air Conditioners in Brunei Darussalam," Applied Energy, Elsevier, vol. 157(C), pages 1-12.
    7. Meng, Ming & Wang, Lixue & Shang, Wei, 2018. "Decomposition and forecasting analysis of China's household electricity consumption using three-dimensional decomposition and hybrid trend extrapolation models," Energy, Elsevier, vol. 165(PA), pages 143-152.
    8. Heeren, Niko & Jakob, Martin & Martius, Gregor & Gross, Nadja & Wallbaum, Holger, 2013. "A component based bottom-up building stock model for comprehensive environmental impact assessment and target control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 45-56.
    9. Safarzadeh, Soroush & Rasti-Barzoki, Morteza, 2019. "A game theoretic approach for pricing policies in a duopolistic supply chain considering energy productivity, industrial rebound effect, and government policies," Energy, Elsevier, vol. 167(C), pages 92-105.
    10. Azmi, W.H. & Sharif, M.Z. & Yusof, T.M. & Mamat, Rizalman & Redhwan, A.A.M., 2017. "Potential of nanorefrigerant and nanolubricant on energy saving in refrigeration system – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 415-428.
    11. Ruble, Isabella & Karaki, Sami, 2013. "Introducing mandatory standards for select household appliances in Lebanon: A cost-benefit analysis," Energy Policy, Elsevier, vol. 52(C), pages 608-617.
    12. Ding, Wenguang & Niu, Hewen & Chen, Jinsong & Du, Jun & Wu, Yang, 2012. "Influence of household biogas digester use on household energy consumption in a semi-arid rural region of northwest China," Applied Energy, Elsevier, vol. 97(C), pages 16-23.
    13. Fan, Jing-Li & Liao, Hua & Liang, Qiao-Mei & Tatano, Hirokazu & Liu, Chun-Feng & Wei, Yi-Ming, 2013. "Residential carbon emission evolutions in urban–rural divided China: An end-use and behavior analysis," Applied Energy, Elsevier, vol. 101(C), pages 323-332.
    14. Ma, Guo & Andrews-Speed, Philip & Zhang, Jiandong, 2013. "Chinese consumer attitudes towards energy saving: The case of household electrical appliances in Chongqing," Energy Policy, Elsevier, vol. 56(C), pages 591-602.
    15. Baldini, Mattia & Klinge Jacobsen, Henrik, 2016. "Optimal trade-offs between energy efficiency improvements and additional renewable energy supply: A review of international experiences," MPRA Paper 102031, University Library of Munich, Germany.
    16. Gómez, Antonio & Dopazo, César & Fueyo, Norberto, 2015. "The future of energy in Uzbekistan," Energy, Elsevier, vol. 85(C), pages 329-338.
    17. Jain, Manisha & Rao, Anand B. & Patwardhan, Anand, 2018. "Appliance labeling and consumer heterogeneity: A discrete choice experiment in India," Applied Energy, Elsevier, vol. 226(C), pages 213-224.
    18. Tsvetan Tsvetanov & Kathleen Segerson, 2014. "The Welfare Effects of Energy Efficiency Standards When Choice Sets Matter," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 1(1), pages 233-271.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:5:p:1890-1905. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.