IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v392y2025ics0306261925007196.html

A novel encoding method for high-dimensional categorical data for electricity demand forecasting in distributed energy systems

Author

Listed:
  • Lee, HyoJae
  • Kameda, Keisuke
  • Manzhos, Sergei
  • Ihara, Manabu

Abstract

There has been a gradual shift towards distributed energy systems (DES) with variable renewable energy as the main power source. However, DES present difficulties of controlling the supply-demand balance due to frequent fluctuations in electricity demand caused by human activities in a small-scale system. While energy big data can drive accurate forecasting, it is challenging in the general case due to the increasing cost of the sensor installation and decreasing density of the data in a high-dimensional feature space. To address these problems, we have studied an accurate electricity demand forecasting method without additional sensor installation cost by proposing an encoding process named “Group Encoding” (GE). The GE process was applied to existing high-dimensional binary data of On/Off state, which is already collected in building energy management systems (BEMS). GE can also solve the problem of decreasing data density in a high-dimensional feature space by reducing the dimension without loss of critical information. The effectiveness of GE was evaluated by dealing with high time-resolution data which can be used for various forecast horizons. The forecasting performance improved by 74 % in terms of MAE when using GE, compared to a typical label encoding, for a 1-min ahead forecast. The top-level of electricity forecast accuracy, 3.27 % MAPE (mean absolute percentage error) in 60-min ahead forecasting, compared to the other forecasts for single building was achieved by using only GE processed data and electricity demand.

Suggested Citation

  • Lee, HyoJae & Kameda, Keisuke & Manzhos, Sergei & Ihara, Manabu, 2025. "A novel encoding method for high-dimensional categorical data for electricity demand forecasting in distributed energy systems," Applied Energy, Elsevier, vol. 392(C).
  • Handle: RePEc:eee:appene:v:392:y:2025:i:c:s0306261925007196
    DOI: 10.1016/j.apenergy.2025.125989
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925007196
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125989?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Jaime Buitrago & Shihab Asfour, 2017. "Short-Term Forecasting of Electric Loads Using Nonlinear Autoregressive Artificial Neural Networks with Exogenous Vector Inputs," Energies, MDPI, vol. 10(1), pages 1-24, January.
    2. Hirth, Lion & Ueckerdt, Falko & Edenhofer, Ottmar, 2015. "Integration costs revisited – An economic framework for wind and solar variability," Renewable Energy, Elsevier, vol. 74(C), pages 925-939.
    3. Guo, Yabin & Wang, Jiangyu & Chen, Huanxin & Li, Guannan & Liu, Jiangyan & Xu, Chengliang & Huang, Ronggeng & Huang, Yao, 2018. "Machine learning-based thermal response time ahead energy demand prediction for building heating systems," Applied Energy, Elsevier, vol. 221(C), pages 16-27.
    4. Luis Hernandez & Carlos Baladrón & Javier M. Aguiar & Belén Carro & Antonio J. Sanchez-Esguevillas & Jaime Lloret, 2013. "Short-Term Load Forecasting for Microgrids Based on Artificial Neural Networks," Energies, MDPI, vol. 6(3), pages 1-24, March.
    5. Arash Moradzadeh & Sahar Zakeri & Maryam Shoaran & Behnam Mohammadi-Ivatloo & Fazel Mohammadi, 2020. "Short-Term Load Forecasting of Microgrid via Hybrid Support Vector Regression and Long Short-Term Memory Algorithms," Sustainability, MDPI, vol. 12(17), pages 1-17, August.
    6. Okubo, Tatsuya & Shimizu, Teruyuki & Hasegawa, Kei & Kikuchi, Yasunori & Manzhos, Sergei & Ihara, Manabu, 2023. "Factors affecting the techno-economic and environmental performance of on-grid distributed hydrogen energy storage systems with solar panels," Energy, Elsevier, vol. 269(C).
    7. Haydt, Gustavo & Leal, Vítor & Pina, André & Silva, Carlos A., 2011. "The relevance of the energy resource dynamics in the mid/long-term energy planning models," Renewable Energy, Elsevier, vol. 36(11), pages 3068-3074.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas Price & Gordon Parker & Gail Vaucher & Robert Jane & Morris Berman, 2022. "Microgrid Energy Management during High-Stress Operation," Energies, MDPI, vol. 15(18), pages 1-11, September.
    2. Wei Sun & Chongchong Zhang, 2018. "A Hybrid BA-ELM Model Based on Factor Analysis and Similar-Day Approach for Short-Term Load Forecasting," Energies, MDPI, vol. 11(5), pages 1-18, May.
    3. Levi, Peter G. & Pollitt, Michael G., 2015. "Cost trajectories of low carbon electricity generation technologies in the UK: A study of cost uncertainty," Energy Policy, Elsevier, vol. 87(C), pages 48-59.
    4. Amal A. Al-Shargabi & Abdulbasit Almhafdy & Dina M. Ibrahim & Manal Alghieth & Francisco Chiclana, 2021. "Tuning Deep Neural Networks for Predicting Energy Consumption in Arid Climate Based on Buildings Characteristics," Sustainability, MDPI, vol. 13(22), pages 1-20, November.
    5. Alexandru Pîrjan & Simona-Vasilica Oprea & George Căruțașu & Dana-Mihaela Petroșanu & Adela Bâra & Cristina Coculescu, 2017. "Devising Hourly Forecasting Solutions Regarding Electricity Consumption in the Case of Commercial Center Type Consumers," Energies, MDPI, vol. 10(11), pages 1-36, October.
    6. Alexis Tantet & Philippe Drobinski, 2021. "A Minimal System Cost Minimization Model for Variable Renewable Energy Integration: Application to France and Comparison to Mean-Variance Analysis," Energies, MDPI, vol. 14(16), pages 1-38, August.
    7. Batalla-Bejerano, Joan & Costa-Campi, Maria Teresa & Trujillo-Baute, Elisa, 2016. "Collateral effects of liberalisation: Metering, losses, load profiles and cost settlement in Spain’s electricity system," Energy Policy, Elsevier, vol. 94(C), pages 421-431.
    8. Andrea Bonfiglio & Massimo Brignone & Marco Invernizzi & Alessandro Labella & Daniele Mestriner & Renato Procopio, 2017. "A Simplified Microgrid Model for the Validation of Islanded Control Logics," Energies, MDPI, vol. 10(8), pages 1-28, August.
    9. Zahari, Teuku Naraski & McLellan, Benjamin Craig, 2024. "Sustainability of Indonesia's transportation sector energy and resources demand under the low carbon transition strategies," Energy, Elsevier, vol. 311(C).
    10. Chen, Hao & Gao, Xin-Ya & Liu, Jian-Yu & Zhang, Qian & Yu, Shiwei & Kang, Jia-Ning & Yan, Rui & Wei, Yi-Ming, 2020. "The grid parity analysis of onshore wind power in China: A system cost perspective," Renewable Energy, Elsevier, vol. 148(C), pages 22-30.
    11. Ruhnau, Oliver & Hirth, Lion & Praktiknjo, Aaron, 2020. "Heating with wind: Economics of heat pumps and variable renewables," Energy Economics, Elsevier, vol. 92(C).
    12. Alhamwi, Alaa & Medjroubi, Wided & Vogt, Thomas & Agert, Carsten, 2018. "Modelling urban energy requirements using open source data and models," Applied Energy, Elsevier, vol. 231(C), pages 1100-1108.
    13. Gautham Krishnadas & Aristides Kiprakis, 2020. "A Machine Learning Pipeline for Demand Response Capacity Scheduling," Energies, MDPI, vol. 13(7), pages 1-25, April.
    14. Ivonne Pena Cabra & Arun K. S. Iyengar & Kirk Labarbara & Robert Wallace & John Brewer, 2025. "Decarbonization of the Power Sector with CCS: Case Study in Two Regions in the U.S., MISO North and SPP RTO West," Energies, MDPI, vol. 18(17), pages 1-43, September.
    15. Cocco Mariani, Viviana & Hennings Och, Stephan & dos Santos Coelho, Leandro & Domingues, Eric, 2019. "Pressure prediction of a spark ignition single cylinder engine using optimized extreme learning machine models," Applied Energy, Elsevier, vol. 249(C), pages 204-221.
    16. Neda Hajibandeh & Mehdi Ehsan & Soodabeh Soleymani & Miadreza Shafie-khah & João P. S. Catalão, 2017. "The Mutual Impact of Demand Response Programs and Renewable Energies: A Survey," Energies, MDPI, vol. 10(9), pages 1-18, September.
    17. Sun, Chunhua & Liu, Yiting & Cao, Shanshan & Chen, Jiali & Xia, Guoqiang & Wu, Xiangdong, 2022. "Identification of control regularity of heating stations based on cross-correlation function dynamic time delay method," Energy, Elsevier, vol. 246(C).
    18. Herath, N. & Tyner, W.E., 2019. "Intended and unintended consequences of US renewable energy policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    19. Maślak, Grzegorz & Orłowski, Przemysław, 2025. "A robust energy flow predictor based on CNN-LSTM for prosumer-oriented microgrids considering changes in biogas generation," Energy, Elsevier, vol. 326(C).
    20. Munoz, Francisco D. & Pumarino, Bruno J. & Salas, Ignacio A., 2017. "Aiming low and achieving it: A long-term analysis of a renewable policy in Chile," Energy Economics, Elsevier, vol. 65(C), pages 304-314.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:392:y:2025:i:c:s0306261925007196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.