IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v269y2023ics0360544223001305.html
   My bibliography  Save this article

Factors affecting the techno-economic and environmental performance of on-grid distributed hydrogen energy storage systems with solar panels

Author

Listed:
  • Okubo, Tatsuya
  • Shimizu, Teruyuki
  • Hasegawa, Kei
  • Kikuchi, Yasunori
  • Manzhos, Sergei
  • Ihara, Manabu

Abstract

Deployment of on-grid distributed hydrogen energy storage (HES) systems, which are more economically advantageous than off-grid systems, requires not only optimization for minimizing system costs but also analysis for clarifying the factors that affect the optimization results. In this study, an on-grid system with solar photovoltaic (PV) panels, an electrolyzer (EC), fuel cell, hydrogen tank, and compressor was modeled. This model was used to analyze the changes in the system cost and greenhouse gas (GHG) emission with an increase of device capacities under different PV capacities and self-sufficiency rates (SSRs). The analyses quantitatively showed that the optimization under massive PV implementation, which generated large amounts of surplus electricity and did not need seasonal storage for more than half a year, makes HES system more economically attractive while reducing the GHG emission. The unit cost reduction of the HES devices made the optimal EC capacity increased, which reduced the curtailment of surplus electricity. When an SSR constraint was imposed, the unit cost reduction of the HES devices decreased the optimal PV capacity while reducing the curtailment of surplus electricity. The maximum installable PV capacity in a microgrid was also discussed in terms of the electricity demand density and grid transmission capacity.

Suggested Citation

  • Okubo, Tatsuya & Shimizu, Teruyuki & Hasegawa, Kei & Kikuchi, Yasunori & Manzhos, Sergei & Ihara, Manabu, 2023. "Factors affecting the techno-economic and environmental performance of on-grid distributed hydrogen energy storage systems with solar panels," Energy, Elsevier, vol. 269(C).
  • Handle: RePEc:eee:energy:v:269:y:2023:i:c:s0360544223001305
    DOI: 10.1016/j.energy.2023.126736
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223001305
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.126736?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kashefi Kaviani, A. & Riahy, G.H. & Kouhsari, SH.M., 2009. "Optimal design of a reliable hydrogen-based stand-alone wind/PV generating system, considering component outages," Renewable Energy, Elsevier, vol. 34(11), pages 2380-2390.
    2. Türkay, Belgin Emre & Telli, Ali Yasin, 2011. "Economic analysis of standalone and grid connected hybrid energy systems," Renewable Energy, Elsevier, vol. 36(7), pages 1931-1943.
    3. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    4. Chade, Daniel & Miklis, Tomasz & Dvorak, David, 2015. "Feasibility study of wind-to-hydrogen system for Arctic remote locations – Grimsey island case study," Renewable Energy, Elsevier, vol. 76(C), pages 204-211.
    5. Abdon, Andreas & Zhang, Xiaojin & Parra, David & Patel, Martin K. & Bauer, Christian & Worlitschek, Jörg, 2017. "Techno-economic and environmental assessment of stationary electricity storage technologies for different time scales," Energy, Elsevier, vol. 139(C), pages 1173-1187.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wengang Chen & Jiajia Chen & Bingyin Xu & Xinpeng Cong & Wenliang Yin, 2023. "Optimal Configuration of User-Side Energy Storage for Multi-Transformer Integrated Industrial Park Microgrid," Energies, MDPI, vol. 16(7), pages 1-15, March.
    2. Zaiter, Issa & Ramadan, Mohamad & Bouabid, Ali & El-Fadel, Mutasem & Mezher, Toufic, 2023. "Potential utilization of hydrogen in the UAE's industrial sector," Energy, Elsevier, vol. 280(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bahramara, S. & Moghaddam, M. Parsa & Haghifam, M.R., 2016. "Optimal planning of hybrid renewable energy systems using HOMER: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 609-620.
    2. Yilmaz, Saban & Dincer, Furkan, 2017. "Optimal design of hybrid PV-Diesel-Battery systems for isolated lands: A case study for Kilis, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 344-352.
    3. Azaza, Maher & Wallin, Fredrik, 2017. "Multi objective particle swarm optimization of hybrid micro-grid system: A case study in Sweden," Energy, Elsevier, vol. 123(C), pages 108-118.
    4. Pinto, Edwin S. & Gronier, Timothé & Franquet, Erwin & Serra, Luis M., 2023. "Opportunities and economic assessment for a third-party delivering electricity, heat and cold to residential buildings," Energy, Elsevier, vol. 272(C).
    5. Panos, Evangelos & Kober, Tom & Wokaun, Alexander, 2019. "Long term evaluation of electric storage technologies vs alternative flexibility options for the Swiss energy system," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    6. Iverson, Zachariah & Achuthan, Ajit & Marzocca, Pier & Aidun, Daryush, 2013. "Optimal design of hybrid renewable energy systems (HRES) using hydrogen storage technology for data center applications," Renewable Energy, Elsevier, vol. 52(C), pages 79-87.
    7. Sun, Hongyue & Ebadi, Abdol Ghaffar & Toughani, Mohsen & Nowdeh, Saber Arabi & Naderipour, Amirreza & Abdullah, Aldrin, 2022. "Designing framework of hybrid photovoltaic-biowaste energy system with hydrogen storage considering economic and technical indices using whale optimization algorithm," Energy, Elsevier, vol. 238(PA).
    8. Maeder, Mattia & Weiss, Olga & Boulouchos, Konstantinos, 2021. "Assessing the need for flexibility technologies in decarbonized power systems: A new model applied to Central Europe," Applied Energy, Elsevier, vol. 282(PA).
    9. Vallianos, Charalampos & Candanedo, José & Athienitis, Andreas, 2023. "Application of a large smart thermostat dataset for model calibration and Model Predictive Control implementation in the residential sector," Energy, Elsevier, vol. 278(PA).
    10. Fazelpour, Farivar & Markarian, Elin & Soltani, Nima, 2017. "Wind energy potential and economic assessment of four locations in Sistan and Balouchestan province in Iran," Renewable Energy, Elsevier, vol. 109(C), pages 646-667.
    11. Bruno Cárdenas & Lawrie Swinfen-Styles & James Rouse & Seamus D. Garvey, 2021. "Short-, Medium-, and Long-Duration Energy Storage in a 100% Renewable Electricity Grid: A UK Case Study," Energies, MDPI, vol. 14(24), pages 1-28, December.
    12. Nikolai Voropai, 2020. "Electric Power System Transformations: A Review of Main Prospects and Challenges," Energies, MDPI, vol. 13(21), pages 1-16, October.
    13. Kruyt, Bert & Lehning, Michael & Kahl, Annelen, 2017. "Potential contributions of wind power to a stable and highly renewable Swiss power supply," Applied Energy, Elsevier, vol. 192(C), pages 1-11.
    14. Rajbongshi, Rumi & Borgohain, Devashree & Mahapatra, Sadhan, 2017. "Optimization of PV-biomass-diesel and grid base hybrid energy systems for rural electrification by using HOMER," Energy, Elsevier, vol. 126(C), pages 461-474.
    15. Wakiyama, Takako & Zusman, Eric, 2021. "The impact of electricity market reform and subnational climate policy on carbon dioxide emissions across the United States: A path analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    16. Jenkins, J.D. & Zhou, Z. & Ponciroli, R. & Vilim, R.B. & Ganda, F. & de Sisternes, F. & Botterud, A., 2018. "The benefits of nuclear flexibility in power system operations with renewable energy," Applied Energy, Elsevier, vol. 222(C), pages 872-884.
    17. Terlouw, Tom & AlSkaif, Tarek & Bauer, Christian & van Sark, Wilfried, 2019. "Optimal energy management in all-electric residential energy systems with heat and electricity storage," Applied Energy, Elsevier, vol. 254(C).
    18. Srihari Sundar & Michael T. Craig & Ashley E. Payne & David J. Brayshaw & Flavio Lehner, 2023. "Meteorological drivers of resource adequacy failures in current and high renewable Western U.S. power systems," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    19. Shi, Xiao & Pan, Jian & Wang, Hewu & Cai, Hua, 2019. "Battery electric vehicles: What is the minimum range required?," Energy, Elsevier, vol. 166(C), pages 352-358.
    20. Sharafi, Masoud & ELMekkawy, Tarek Y., 2014. "Multi-objective optimal design of hybrid renewable energy systems using PSO-simulation based approach," Renewable Energy, Elsevier, vol. 68(C), pages 67-79.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:269:y:2023:i:c:s0360544223001305. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.