IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v363y2024ics0306261924004276.html
   My bibliography  Save this article

Fuzzy-random robust flexible programming on sustainable closed-loop renewable energy supply chain

Author

Listed:
  • Giri, Binoy Krishna
  • Roy, Sankar Kumar

Abstract

Photovoltaic (PV) systems have become a widely accepted method of harnessing solar energy in recent decades. In addition to the growing use of renewable energies are being used due to the depletion of fossil fuel supplies and the corresponding pollution generated by these non-renewable fuels. Since PV systems possess a limited lifespan, and are predicted to eventually become outdated, sustainability and recycling that should be incorporated into the structure of the solar system supply chain. The management of high and low moisture waste (H&LMW) is crucial due to its harmful environmental impacts, including sludge waste, carbon dioxide (CO2), and acid compounds. This study explores the integration of research on H&LMW and PV systems, focusing on energy generation from biogas, incineration power plants, and PV systems. In this respect, we propose a multi-objective mixed-integer programming model to construct a sustainable closed-loop renewable energy supply chain by considering forward and reverse flow through solar, biogas, and incineration power plants. Reducing CO2 with power-to-gas technology is thought to be an environmentally friendly approach. A novel fuzzy-random robust flexible programming approach based on Me measure is proposed, which overcomes the limitations of addressing the uncertainty of the parameters. Next, in order to solve the suggested multi-objective model, a novel strategy known as utility function based multi-choice conic goal programming is presented. A case study explores the sustainable challenges of a closed-loop renewable energy supply network in India’s renewable energy sector. The experimental results indicate that 9 candidate locations are selected for solar wafer production facilities, while 10, 9, and 15 locations are chosen for solar cell production, module manufacturing, and solar power plants, respectively. A sensitivity analysis reveals that the proportion of air pollution limitations possessively rises from 100% to 80% corresponding to the aggregate cost increases from INR 8021452 to INR 8056542.

Suggested Citation

  • Giri, Binoy Krishna & Roy, Sankar Kumar, 2024. "Fuzzy-random robust flexible programming on sustainable closed-loop renewable energy supply chain," Applied Energy, Elsevier, vol. 363(C).
  • Handle: RePEc:eee:appene:v:363:y:2024:i:c:s0306261924004276
    DOI: 10.1016/j.apenergy.2024.123044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924004276
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Liangce & Lu, Zhigang & Zhang, Jiangfeng & Geng, Lijun & Zhao, Hao & Li, Xueping, 2018. "Low-carbon economic dispatch for electricity and natural gas systems considering carbon capture systems and power-to-gas," Applied Energy, Elsevier, vol. 224(C), pages 357-370.
    2. Li, Ruiheng & Xu, Dong & Tian, Hao & Zhu, Yiping, 2023. "Multi-objective study and optimization of a solar-boosted geothermal flash cycle integrated into an innovative combined power and desalinated water production process: Application of a case study," Energy, Elsevier, vol. 282(C).
    3. Helgeson, Broghan & Peter, Jakob, 2020. "The role of electricity in decarbonizing European road transport – Development and assessment of an integrated multi-sectoral model," Applied Energy, Elsevier, vol. 262(C).
    4. Rosa, Lorenzo & Mazzotti, Marco, 2022. "Potential for hydrogen production from sustainable biomass with carbon capture and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    5. Sankar Kumar Roy & Gurupada Maity & Gerhard Wilhelm Weber & Sirma Zeynep Alparslan Gök, 2017. "Conic scalarization approach to solve multi-choice multi-objective transportation problem with interval goal," Annals of Operations Research, Springer, vol. 253(1), pages 599-620, June.
    6. Gilani, H. & Sahebi, H. & Oliveira, Fabricio, 2020. "Sustainable sugarcane-to-bioethanol supply chain network design: A robust possibilistic programming model," Applied Energy, Elsevier, vol. 278(C).
    7. Ikäheimo, Jussi & Weiss, Robert & Kiviluoma, Juha & Pursiheimo, Esa & Lindroos, Tomi J., 2022. "Impact of power-to-gas on the cost and design of the future low-carbon urban energy system," Applied Energy, Elsevier, vol. 305(C).
    8. Tsao, Yu-Chung & Thanh, Vo-Van, 2019. "A multi-objective mixed robust possibilistic flexible programming approach for sustainable seaport-dry port network design under an uncertain environment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 124(C), pages 13-39.
    9. Chang, Ching-Ter, 2011. "Multi-choice goal programming with utility functions," European Journal of Operational Research, Elsevier, vol. 215(2), pages 439-445, December.
    10. Yang, Chengying & Wu, Zhixin & Li, Xuetao & Fars, Ashk, 2024. "Risk-constrained stochastic scheduling for energy hub: Integrating renewables, demand response, and electric vehicles," Energy, Elsevier, vol. 288(C).
    11. Hosseini-Motlagh, Seyyed-Mahdi & Samani, Mohammad Reza Ghatreh & Shahbazbegian, Vahid, 2020. "Innovative strategy to design a mixed resilient-sustainable electricity supply chain network under uncertainty," Applied Energy, Elsevier, vol. 280(C).
    12. Jiang, Zhangsheng & Xu, Chenghao, 2023. "Policy incentives, government subsidies, and technological innovation in new energy vehicle enterprises: Evidence from China," Energy Policy, Elsevier, vol. 177(C).
    13. A. Charnes & W. W. Cooper, 1957. "Management Models and Industrial Applications of Linear Programming," Management Science, INFORMS, vol. 4(1), pages 38-91, October.
    14. Gurupada Maity & Sankar Kumar Roy, 2016. "Solving multi-objective transportation problem with interval goal using utility function approach," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 27(4), pages 513-529.
    15. Lai, Ching-Ming & Teh, Jiashen, 2022. "Network topology optimisation based on dynamic thermal rating and battery storage systems for improved wind penetration and reliability," Applied Energy, Elsevier, vol. 305(C).
    16. Ahn, Yu-Chan & Lee, In-Beum & Lee, Kun-Hong & Han, Jee-Hoon, 2015. "Strategic planning design of microalgae biomass-to-biodiesel supply chain network: Multi-period deterministic model," Applied Energy, Elsevier, vol. 154(C), pages 528-542.
    17. Mondal, Arijit & Giri, Binoy Krishna & Roy, Sankar Kumar, 2023. "An integrated sustainable bio-fuel and bio-energy supply chain: A novel approach based on DEMATEL and fuzzy-random robust flexible programming with Me measure," Applied Energy, Elsevier, vol. 343(C).
    18. Chang, Ching-Ter, 2007. "Multi-choice goal programming," Omega, Elsevier, vol. 35(4), pages 389-396, August.
    19. Kharaji Manouchehrabadi, Maedeh & Yaghoubi, Saeed & Tajik, Javad, 2020. "Optimal scenarios for solar cell supply chain considering degradation in powerhouses," Renewable Energy, Elsevier, vol. 145(C), pages 1104-1125.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Basim S. O. Alsaedi & Marwan H. Ahelali, 2024. "A Sustainable Supply Chain Model with Low Carbon Emissions for Deteriorating Imperfect-Quality Items under Learning Fuzzy Theory," Mathematics, MDPI, vol. 12(8), pages 1-43, April.
    2. Mariana Losada-Agudelo & Sebastian Souyris, 2024. "Sustainable Operations Management in the Energy Sector: A Comprehensive Review of the Literature from 2000 to 2024," Sustainability, MDPI, vol. 16(18), pages 1-33, September.
    3. Aiming Mo & Yan Zhang & Yiyong Xiong & Fan Ma & Lin Sun, 2024. "Energy–Logistics Cooperative Optimization for a Port-Integrated Energy System," Mathematics, MDPI, vol. 12(12), pages 1-24, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mondal, Arijit & Giri, Binoy Krishna & Roy, Sankar Kumar, 2023. "An integrated sustainable bio-fuel and bio-energy supply chain: A novel approach based on DEMATEL and fuzzy-random robust flexible programming with Me measure," Applied Energy, Elsevier, vol. 343(C).
    2. Zheng, Xiao-Xue & Chang, Ching-Ter, 2021. "Topology design of remote patient monitoring system concerning qualitative and quantitative issues," Omega, Elsevier, vol. 98(C).
    3. Gezen, Mesliha & Karaaslan, Abdulkerim, 2022. "Energy planning based on Vision-2023 of Turkey with a goal programming under fuzzy multi-objectives," Energy, Elsevier, vol. 261(PA).
    4. Gurupada Maity & Sankar Kumar Roy & Jose Luis Verdegay, 2019. "Time Variant Multi-Objective Interval-Valued Transportation Problem in Sustainable Development," Sustainability, MDPI, vol. 11(21), pages 1-15, November.
    5. Kwon, Oseok & Han, Jeehoon, 2021. "Waste-to-bioethanol supply chain network: A deterministic model," Applied Energy, Elsevier, vol. 300(C).
    6. Luis Francisco López-Castro & Elyn L. Solano-Charris, 2021. "Integrating Resilience and Sustainability Criteria in the Supply Chain Network Design. A Systematic Literature Review," Sustainability, MDPI, vol. 13(19), pages 1-26, September.
    7. Peiyu Zhang & Yankui Liu & Guoqing Yang & Guoqing Zhang, 2022. "A multi-objective distributionally robust model for sustainable last mile relief network design problem," Annals of Operations Research, Springer, vol. 309(2), pages 689-730, February.
    8. Chang, Ching-Ter & Chung, Cheng-Kung & Sheu, Jiuh-Biing & Zhuang, Zheng-Yun & Chen, Huang-Mu, 2014. "The optimal dual-pricing policy of mall parking service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 70(C), pages 223-243.
    9. Shahbazbegian, Vahid & Shafie-khah, Miadreza & Laaksonen, Hannu & Strbac, Goran & Ameli, Hossein, 2023. "Resilience-oriented operation of microgrids in the presence of power-to-hydrogen systems," Applied Energy, Elsevier, vol. 348(C).
    10. Hocine, Amin & Kouaissah, Noureddine & Lozza, Sergio Ortobelli & Aouam, Tarik, 2024. "Modelling De novo programming within Simon’s satisficing theory: Methods and application in designing an optimal offshore wind farm location system," European Journal of Operational Research, Elsevier, vol. 315(1), pages 289-306.
    11. Zhuang, Zheng-Yun & Chung, Cheng-Kung, 2024. "Dissecting the visiting willingness of driving visitors facing a retail market's dual-pricing policy for parking," Journal of Retailing and Consumer Services, Elsevier, vol. 78(C).
    12. Hosseini-Motlagh, Seyyed-Mahdi & Samani, Mohammad Reza Ghatreh & Shahbazbegian, Vahid, 2020. "Innovative strategy to design a mixed resilient-sustainable electricity supply chain network under uncertainty," Applied Energy, Elsevier, vol. 280(C).
    13. Fambri, Gabriele & Diaz-Londono, Cesar & Mazza, Andrea & Badami, Marco & Sihvonen, Teemu & Weiss, Robert, 2022. "Techno-economic analysis of Power-to-Gas plants in a gas and electricity distribution network system with high renewable energy penetration," Applied Energy, Elsevier, vol. 312(C).
    14. Sankar Kumar Roy & Gurupada Maity & Gerhard Wilhelm Weber & Sirma Zeynep Alparslan Gök, 2017. "Conic scalarization approach to solve multi-choice multi-objective transportation problem with interval goal," Annals of Operations Research, Springer, vol. 253(1), pages 599-620, June.
    15. Islam Hassanin & Matjaz Knez, 2022. "Managing Supply Chain Activities in the Field of Energy Production Focusing on Renewables," Sustainability, MDPI, vol. 14(12), pages 1-33, June.
    16. Zhang, Bin & Wu, Xuewei & Ghias, Amer M.Y.M. & Chen, Zhe, 2023. "Coordinated carbon capture systems and power-to-gas dynamic economic energy dispatch strategy for electricity–gas coupled systems considering system uncertainty: An improved soft actor–critic approach," Energy, Elsevier, vol. 271(C).
    17. Gang Lin & Honglei Xu & Shaoli Wang & Conghua Lin & Chenyu Huang, 2022. "Performance Optimisation of Public Transport Networks Using AHP-Dependent Multi-Aspiration-Level Goal Programming," Energies, MDPI, vol. 15(17), pages 1-16, September.
    18. Hocine, Amin & Zhuang, Zheng-Yun & Kouaissah, Noureddine & Li, Der-Chiang, 2020. "Weighted-additive fuzzy multi-choice goal programming (WA-FMCGP) for supporting renewable energy site selection decisions," European Journal of Operational Research, Elsevier, vol. 285(2), pages 642-654.
    19. Wang, Haibing & Li, Bowen & Zhao, Anjie & Sun, Weiqing, 2024. "Two-stage planning model of power-to-gas station considering carbon emission flow," Energy, Elsevier, vol. 296(C).
    20. Ensafian, Hamidreza & Yaghoubi, Saeed, 2017. "Robust optimization model for integrated procurement, production and distribution in platelet supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 32-55.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:363:y:2024:i:c:s0306261924004276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.