IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v25y2025i4d10.1007_s12351-025-00967-5.html
   My bibliography  Save this article

Economic production quantity model with shortages under price- and green-sensitive demand in uncertain environment

Author

Listed:
  • Alay Kumar Mukherjee

    (Vidyasagar University, Department of Applied Mathematics)

  • Sankar Kumar Roy

    (Vidyasagar University, Department of Applied Mathematics)

  • Rajeswari Seshadri

    (Pondicherry University (A Central University), Department of Mathematics)

  • Tomaskova Hana

    (University of Hradec Kralove, Faculty of Informatics and Management)

  • Shawei He

    (Nanjing University of Aeronautics and Astronautics, College of Economics and Management)

Abstract

This study advances the classical economic production quantity model by incorporating multiple real-world complexities within the context of deteriorating items under uncertain environment. A novel framework is developed that integrates preservation technology to reduce deterioration rates, along with the optimal investment decisions required for its implementation. To better reflect in contemporary market dynamics, the model includes a demand rate influenced by both price and greening level. Further the model accommodates shortages, allowing partial back ordering by reserving shortfall quantities for customers in subsequent production time enhancing customer retention and operational flexibility. In alignment with global sustainability goals, the formulated model introduces carbon emission taxation, incorporating four distinct environmental policies: simple tax, cap, cap and reward, and strict under permitted cap policy. In addition to that, a unique concept, development cost is used in the proposed model. To account for economic variability, money inflation is considered, and fuzzy-random cost parameters are employed to model for tackling imprecise and uncertain market information. The model’s effectiveness is demonstrated through three hypothetical case studies, which illustrate the model’s capacity to handle uncertainty and sustainability simultaneously. Finally, the results illustrate that a sustainable version incorporating controllable carbon emission, preservation technology and green investments are more realistic and profitable as compared to other existing models.

Suggested Citation

  • Alay Kumar Mukherjee & Sankar Kumar Roy & Rajeswari Seshadri & Tomaskova Hana & Shawei He, 2025. "Economic production quantity model with shortages under price- and green-sensitive demand in uncertain environment," Operational Research, Springer, vol. 25(4), pages 1-37, December.
  • Handle: RePEc:spr:operea:v:25:y:2025:i:4:d:10.1007_s12351-025-00967-5
    DOI: 10.1007/s12351-025-00967-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-025-00967-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-025-00967-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Giri, Binoy Krishna & Roy, Sankar Kumar, 2024. "Fuzzy-random robust flexible programming on sustainable closed-loop renewable energy supply chain," Applied Energy, Elsevier, vol. 363(C).
    2. Tahereh Mohammadi & Seyed Mojtaba Sajadi & Seyed Esmaeil Najafi & Mohammadreza Taghizadeh-Yazdi, 2024. "Multi Objective and Multi-Product Perishable Supply Chain with Vendor-Managed Inventory and IoT-Related Technologies," Mathematics, MDPI, vol. 12(5), pages 1-30, February.
    3. Yang, Hui-Ling, 2004. "Two-warehouse inventory models for deteriorating items with shortages under inflation," European Journal of Operational Research, Elsevier, vol. 157(2), pages 344-356, September.
    4. Falguni Mahato & Mukunda Choudhury & Gour Chandra Mahata, 2023. "Inventory models for deteriorating items with fixed lifetime, partial backordering and carbon emissions policies," Journal of Management Analytics, Taylor & Francis Journals, vol. 10(1), pages 129-190, January.
    5. Asim Paul & Magfura Pervin & Sankar Kumar Roy & Nelson Maculan & Gerhard-Wilhelm Weber, 2022. "A green inventory model with the effect of carbon taxation," Annals of Operations Research, Springer, vol. 309(1), pages 233-248, February.
    6. Dharmendra Yadav & Umesh Chand & Ruchi Goel & Biswajit Sarkar, 2023. "Smart Production System with Random Imperfect Process, Partial Backordering, and Deterioration in an Inflationary Environment," Mathematics, MDPI, vol. 11(2), pages 1-20, January.
    7. Magfura Pervin & Sankar Kumar Roy & Gerhard-Wilhelm Weber, 2018. "Analysis of inventory control model with shortage under time-dependent demand and time-varying holding cost including stochastic deterioration," Annals of Operations Research, Springer, vol. 260(1), pages 437-460, January.
    8. San-José, Luis A. & Sicilia, Joaquín & Cárdenas-Barrón, Leopoldo Eduardo & González-de-la-Rosa, Manuel, 2024. "A sustainable inventory model for deteriorating items with power demand and full backlogging under a carbon emission tax," International Journal of Production Economics, Elsevier, vol. 268(C).
    9. Mondal, Arijit & Giri, Binoy Krishna & Roy, Sankar Kumar, 2023. "An integrated sustainable bio-fuel and bio-energy supply chain: A novel approach based on DEMATEL and fuzzy-random robust flexible programming with Me measure," Applied Energy, Elsevier, vol. 343(C).
    10. Xiaoyue Zhang & Wenqiang Dai & Xiaoqiang Cai, 2024. "Inventory replenishment decisions with uncertain price and demand," International Journal of Production Research, Taylor & Francis Journals, vol. 62(7), pages 2663-2682, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hachen Ali & Fleming Akhtar & Sudipta Guin & Pritam Kumar Pakhira & Ali Akbar Shaikh & Izhar Ahmad, 2025. "Impact of carbon emission and preservation investment on a manufacturing system for deteriorating item with price and greenness dependent demand via equilibrium optimizer algorithm," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 16(5), pages 1813-1829, May.
    2. Md. Abdul Hakim & Ibrahim M. Hezam & Adel Fahad Alrasheedi & Jeonghwan Gwak, 2022. "Pricing Policy in an Inventory Model with Green Level Dependent Demand for a Deteriorating Item," Sustainability, MDPI, vol. 14(8), pages 1-16, April.
    3. Musaraf Hossain & Mostafijur Rahaman & Shariful Alam & Magfura Pervin & Soheil Salahshour & Sankar Prasad Mondal, 2025. "An Inventory Model with Price-, Time- and Greenness-Sensitive Demand and Trade Credit-Based Economic Communications," Logistics, MDPI, vol. 9(3), pages 1-24, September.
    4. Maihami, Reza & Govindan, Kannan & Fattahi, Mohammad, 2019. "The inventory and pricing decisions in a three-echelon supply chain of deteriorating items under probabilistic environment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 118-138.
    5. Sadia Samar Ali & Haripriya Barman & Rajbir Kaur & Hana Tomaskova & Sankar Kumar Roy, 2021. "Multi-Product Multi Echelon Measurements of Perishable Supply Chain: Fuzzy Non-Linear Programming Approach," Mathematics, MDPI, vol. 9(17), pages 1-27, August.
    6. Liao, Jui-Jung & Chung, Kun-Jen & Huang, Kuo-Nan, 2013. "A deterministic inventory model for deteriorating items with two warehouses and trade credit in a supply chain system," International Journal of Production Economics, Elsevier, vol. 146(2), pages 557-565.
    7. Alamri, Adel A. & Syntetos, Aris A., 2018. "Beyond LIFO and FIFO: Exploring an Allocation-In-Fraction-Out (AIFO) policy in a two-warehouse inventory model," International Journal of Production Economics, Elsevier, vol. 206(C), pages 33-45.
    8. Fei, Liguo & Wang, Yanqing, 2022. "Demand prediction of emergency materials using case-based reasoning extended by the Dempster-Shafer theory," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    9. Luis A. San-José & Joaquín Sicilia & Manuel González-de-la-Rosa & Jaime Febles-Acosta, 2022. "Profit maximization in an inventory system with time-varying demand, partial backordering and discrete inventory cycle," Annals of Operations Research, Springer, vol. 316(2), pages 763-783, September.
    10. Ranveer Singh Rana & Dinesh Kumar & Kanika Prasad & K. Mathiyazhagan, 2024. "Mitigating the impact of demand disruption on perishable inventory in a two-warehouse system," Operations Management Research, Springer, vol. 17(2), pages 469-504, June.
    11. Giri, Binoy Krishna & Roy, Sankar Kumar, 2024. "Fuzzy-random robust flexible programming on sustainable closed-loop renewable energy supply chain," Applied Energy, Elsevier, vol. 363(C).
    12. Jonas C.P. Yu & Kung-Jeng Wang & Yu-Siang Lin, 2016. "Managing dual warehouses with an incentive policy for deteriorating items," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(3), pages 586-602, February.
    13. Debasis Das & Mohuya Kar & Arindam Roy & Samarjit Kar, 2012. "Two-warehouse production model for deteriorating inventory items with stock-dependent demand under inflation over a random planning horizon," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(2), pages 251-280, June.
    14. Al-Amin Khan, Md. & Shaikh, Ali Akbar & Konstantaras, Ioannis & Bhunia, Asoke Kumar & Cárdenas-Barrón, Leopoldo Eduardo, 2020. "Inventory models for perishable items with advanced payment, linearly time-dependent holding cost and demand dependent on advertisement and selling price," International Journal of Production Economics, Elsevier, vol. 230(C).
    15. Chung, Kun-Jen & Huang, Tien-Shou, 2007. "The optimal retailer's ordering policies for deteriorating items with limited storage capacity under trade credit financing," International Journal of Production Economics, Elsevier, vol. 106(1), pages 127-145, March.
    16. Kosuke Kawakami & Hirokazu Kobayashi & Kazuhide Nakata, 2021. "Seasonal Inventory Management Model for Raw Materials in Steel Industry," Interfaces, INFORMS, vol. 51(4), pages 312-324, July.
    17. Zoubida Benmamoun & Khaoula Khlie & Mohammad Dehghani & Youness Gherabi, 2024. "WOA: Wombat Optimization Algorithm for Solving Supply Chain Optimization Problems," Mathematics, MDPI, vol. 12(7), pages 1-61, April.
    18. M. Palanivel & R. Uthayakumar, 2016. "Two-warehouse inventory model for non-instantaneous deteriorating items with partial backlogging and inflation over a finite time horizon," OPSEARCH, Springer;Operational Research Society of India, vol. 53(2), pages 278-302, June.
    19. Dharmendra Yadav & S.R. Singh & Rachna Kumari, 2015. "Retailer's optimal policy under inflation in fuzzy environment with trade credit," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(4), pages 754-762, March.
    20. Mariana Losada-Agudelo & Sebastian Souyris, 2024. "Sustainable Operations Management in the Energy Sector: A Comprehensive Review of the Literature from 2000 to 2024," Sustainability, MDPI, vol. 16(18), pages 1-33, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:25:y:2025:i:4:d:10.1007_s12351-025-00967-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.