IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i21p6161-d283559.html
   My bibliography  Save this article

Time Variant Multi-Objective Interval-Valued Transportation Problem in Sustainable Development

Author

Listed:
  • Gurupada Maity

    (Department of Applied Mathematics with Oceanology and Computer Programming, Vidyasagar University, Midnapore 721102, West Bengal, India
    These authors contributed equally to this work.)

  • Sankar Kumar Roy

    (Department of Applied Mathematics with Oceanology and Computer Programming, Vidyasagar University, Midnapore 721102, West Bengal, India)

  • Jose Luis Verdegay

    (Department of Computer Science and Artificial Intelligence, University of Granada, 18071 Granada, Spain
    These authors contributed equally to this work.)

Abstract

Sustainable development is treated as the achievement of continued economic development without detriment to environmental and natural resources. Now-a-days, in a competitive market scenario, most of us are willing to pay less and to gain more in quickly without considering negative externalities for the environment and quality of life for future generations. Recalling this fact, this paper explores the study of time variant multi-objective transportation problem (MOTP) with consideration of minimizing pollution. Time of transportation is of utmost importance in reality; based on this consideration, we formulate a MOTP, where we optimize transportation time as well as the cost function. The parameters of MOTP are interval-valued, so this form of MOTP is termed as a multi-objective interval transportation problem (MOITP). A procedure is taken into consideration for converting MOITP into deterministic form and then for solving it. Goal programming is applied to solve the converted transportation problem. A case study is conducted to justify the methodology by utilizing the environmental impact. At last, conclusions and future research directions are included regarding our study.

Suggested Citation

  • Gurupada Maity & Sankar Kumar Roy & Jose Luis Verdegay, 2019. "Time Variant Multi-Objective Interval-Valued Transportation Problem in Sustainable Development," Sustainability, MDPI, vol. 11(21), pages 1-15, November.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:21:p:6161-:d:283559
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/21/6161/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/21/6161/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. L. V. Kantorovich, 1960. "Mathematical Methods of Organizing and Planning Production," Management Science, INFORMS, vol. 6(4), pages 366-422, July.
    2. Sankar Kumar Roy & Gurupada Maity & Gerhard Wilhelm Weber & Sirma Zeynep Alparslan Gök, 2017. "Conic scalarization approach to solve multi-choice multi-objective transportation problem with interval goal," Annals of Operations Research, Springer, vol. 253(1), pages 599-620, June.
    3. Gurupada Maity & Sankar Kumar Roy, 2016. "Solving multi-objective transportation problem with interval goal using utility function approach," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 27(4), pages 513-529.
    4. Wagenaar, Joris & Kroon, Leo & Fragkos, Ioannis, 2017. "Rolling stock rescheduling in passenger railway transportation using dead-heading trips and adjusted passenger demand," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 140-161.
    5. Vincent F. Yu & Kuo-Jen Hu & An-Yuan Chang, 2015. "An interactive approach for the multi-objective transportation problem with interval parameters," International Journal of Production Research, Taylor & Francis Journals, vol. 53(4), pages 1051-1064, February.
    6. Zhen, Lu & Liang, Zhe & Zhuge, Dan & Lee, Loo Hay & Chew, Ek Peng, 2017. "Daily berth planning in a tidal port with channel flow control," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 193-217.
    7. Liu, Shiang-Tai, 2003. "The total cost bounds of the transportation problem with varying demand and supply," Omega, Elsevier, vol. 31(4), pages 247-251, August.
    8. Sankar Kumar Roy & Gurupada Maity & Gerhard-Wilhelm Weber, 2017. "Multi-objective two-stage grey transportation problem using utility function with goals," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(2), pages 417-439, June.
    9. Chang, Ching-Ter, 2007. "Multi-choice goal programming," Omega, Elsevier, vol. 35(4), pages 389-396, August.
    10. Sharma, Anuj & Verma, Vanita & Kaur, Prabhjot & Dahiya, Kalpana, 2015. "An iterative algorithm for two level hierarchical time minimization transportation problem," European Journal of Operational Research, Elsevier, vol. 246(3), pages 700-707.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amrit Das & Gyu M. Lee, 2021. "A Multi-Objective Stochastic Solid Transportation Problem with the Supply, Demand, and Conveyance Capacity Following the Weibull Distribution," Mathematics, MDPI, vol. 9(15), pages 1-21, July.
    2. Shyamali Ghosh & Karl-Heinz Küfer & Sankar Kumar Roy & Gerhard-Wilhelm Weber, 2023. "Type-2 zigzag uncertain multi-objective fixed-charge solid transportation problem: time window vs. preservation technology," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(1), pages 337-362, March.
    3. Soumen Kumar Das & Magfura Pervin & Sankar Kumar Roy & Gerhard Wilhelm Weber, 2023. "Multi-objective solid transportation-location problem with variable carbon emission in inventory management: a hybrid approach," Annals of Operations Research, Springer, vol. 324(1), pages 283-309, May.
    4. Niloofar Jahani & Arash Sepehri & Hadi Rezaei Vandchali & Erfan Babaee Tirkolaee, 2021. "Application of Industry 4.0 in the Procurement Processes of Supply Chains: A Systematic Literature Review," Sustainability, MDPI, vol. 13(14), pages 1-25, July.
    5. Fanrong Xie & Zuoan Li, 2022. "An iterative solution technique for capacitated two-stage time minimization transportation problem," 4OR, Springer, vol. 20(4), pages 637-684, December.
    6. Shyamali Ghosh & Sankar Kumar Roy & Gerhard-Wilhelm Weber, 2023. "Interactive strategy of carbon cap-and-trade policy on sustainable multi-objective solid transportation problem with twofold uncertain waste management," Annals of Operations Research, Springer, vol. 326(1), pages 157-197, July.
    7. Tooraj Karimi & Arvin Hojati & Jeffrey Yi-Lin Forrest, 2022. "A new methodology for sustainability measurement of banks based on rough set theory," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(1), pages 415-431, March.
    8. Svetla Stoilova, 2020. "An Integrated Multi-Criteria and Multi-Objective Optimization Approach for Establishing the Transport Plan of Intercity Trains," Sustainability, MDPI, vol. 12(2), pages 1-24, January.
    9. Masoud Alinezhad & Iraj Mahdavi & Milad Hematian & Erfan Babaee Tirkolaee, 2022. "A fuzzy multi-objective optimization model for sustainable closed-loop supply chain network design in food industries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 8779-8806, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sankar Kumar Roy & Gurupada Maity & Gerhard-Wilhelm Weber, 2017. "Multi-objective two-stage grey transportation problem using utility function with goals," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(2), pages 417-439, June.
    2. Zheng, Xiao-Xue & Chang, Ching-Ter, 2021. "Topology design of remote patient monitoring system concerning qualitative and quantitative issues," Omega, Elsevier, vol. 98(C).
    3. Xie, Fanrong & Butt, Muhammad Munir & Li, Zuoan & Zhu, Linzhi, 2017. "An upper bound on the minimal total cost of the transportation problem with varying demands and supplies," Omega, Elsevier, vol. 68(C), pages 105-118.
    4. Firoz Ahmad & Ahmad Yusuf Adhami, 2019. "Total cost measures with probabilistic cost function under varying supply and demand in transportation problem," OPSEARCH, Springer;Operational Research Society of India, vol. 56(2), pages 583-602, June.
    5. Soumen Kumar Das & Sankar Kumar Roy & Gerhard Wilhelm Weber, 2020. "An exact and a heuristic approach for the transportation-p-facility location problem," Computational Management Science, Springer, vol. 17(3), pages 389-407, October.
    6. Soumen Kumar Das & Magfura Pervin & Sankar Kumar Roy & Gerhard Wilhelm Weber, 2023. "Multi-objective solid transportation-location problem with variable carbon emission in inventory management: a hybrid approach," Annals of Operations Research, Springer, vol. 324(1), pages 283-309, May.
    7. Vishal Kashav & Chandra Prakash Garg & Rupesh Kumar, 2023. "Ranking the strategies to overcome the barriers of the maritime supply chain (MSC) of containerized freight under fuzzy environment," Annals of Operations Research, Springer, vol. 324(1), pages 1223-1268, May.
    8. Sonia Singh & Shalabh Singh, 2018. "Bi-criteria transportation problem with multiple parameters," Annals of Operations Research, Springer, vol. 269(1), pages 667-692, October.
    9. Liu, Baoli & Li, Zhi-Chun & Sheng, Dian & Wang, Yadong, 2021. "Integrated planning of berth allocation and vessel sequencing in a seaport with one-way navigation channel," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 23-47.
    10. Derya Deliktaş, 2022. "Self-adaptive memetic algorithms for multi-objective single machine learning-effect scheduling problems with release times," Flexible Services and Manufacturing Journal, Springer, vol. 34(3), pages 748-784, September.
    11. Ghazale Kordi & Parsa Hasanzadeh-Moghimi & Mohammad Mahdi Paydar & Ebrahim Asadi-Gangraj, 2023. "A multi-objective location-routing model for dental waste considering environmental factors," Annals of Operations Research, Springer, vol. 328(1), pages 755-792, September.
    12. Alves, Cláudio & de Carvalho, José Valério & Clautiaux, François & Rietz, Jürgen, 2014. "Multidimensional dual-feasible functions and fast lower bounds for the vector packing problem," European Journal of Operational Research, Elsevier, vol. 233(1), pages 43-63.
    13. Melega, Gislaine Mara & de Araujo, Silvio Alexandre & Jans, Raf, 2018. "Classification and literature review of integrated lot-sizing and cutting stock problems," European Journal of Operational Research, Elsevier, vol. 271(1), pages 1-19.
    14. Zhen, Lu & Zhuge, Dan & Wang, Shuaian & Wang, Kai, 2022. "Integrated berth and yard space allocation under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 1-27.
    15. Mhand Hifi & Rym M'Hallah, 2005. "An Exact Algorithm for Constrained Two-Dimensional Two-Staged Cutting Problems," Operations Research, INFORMS, vol. 53(1), pages 140-150, February.
    16. Daniela Paddeu & Paulus Aditjandra, 2020. "Shaping Urban Freight Systems via a Participatory Approach to Inform Policy-Making," Sustainability, MDPI, vol. 12(1), pages 1-15, January.
    17. John Martinovic, 2022. "A note on the integrality gap of cutting and skiving stock instances," 4OR, Springer, vol. 20(1), pages 85-104, March.
    18. Wang, Xiong & Ferreira, Fernando A.F. & Chang, Ching-Ter, 2022. "Multi-objective competency-based approach to project scheduling and staff assignment: Case study of an internal audit project," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).
    19. Wawrzyniak, Jakub & Drozdowski, Maciej & Sanlaville, Éric, 2020. "Selecting algorithms for large berth allocation problems," European Journal of Operational Research, Elsevier, vol. 283(3), pages 844-862.
    20. B. S. C. Campello & C. T. L. S. Ghidini & A. O. C. Ayres & W. A. Oliveira, 2022. "A residual recombination heuristic for one-dimensional cutting stock problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 194-220, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:21:p:6161-:d:283559. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.