IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v269y2018i1d10.1007_s10479-018-2825-z.html
   My bibliography  Save this article

Bi-criteria transportation problem with multiple parameters

Author

Listed:
  • Sonia Singh

    (Indian Institute of Management)

  • Shalabh Singh

    (Indian Institute of Management)

Abstract

This paper introduces a bi-criteria transportation problem with multiple parameters which brings together the concept of price discrimination from the area of marketing management to the world of multi objective transportation problems. The problem deals with two objectives, the overall shipment cost and the bottleneck time of shipment. Both the objectives are of minimization type and have multi-choice coefficients pertaining to differential marketing strategies or different modes of transportation available. First, the problem with minimum availability and demand of goods is solved and then the problem is extended to the case of interval demand and supply. By iteratively solving multi-choice variants of a cost minimizing transportation problem/minimum cost flow problem, all Pareto optimal time–cost pairs are obtained. The proposed algorithm for both the variants is successfully implemented and solved using the CPLEX optimization package.

Suggested Citation

  • Sonia Singh & Shalabh Singh, 2018. "Bi-criteria transportation problem with multiple parameters," Annals of Operations Research, Springer, vol. 269(1), pages 667-692, October.
  • Handle: RePEc:spr:annopr:v:269:y:2018:i:1:d:10.1007_s10479-018-2825-z
    DOI: 10.1007/s10479-018-2825-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-018-2825-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-018-2825-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Prakash, Satya & Kumar, Pranav & Prasad, B.V.N.S. & Gupta, Anuj, 2008. "Pareto optimal solutions of a cost-time trade-off bulk transportation problem," European Journal of Operational Research, Elsevier, vol. 188(1), pages 85-100, July.
    2. James B. Orlin, 1993. "A Faster Strongly Polynomial Minimum Cost Flow Algorithm," Operations Research, INFORMS, vol. 41(2), pages 338-350, April.
    3. W. C. Healy, 1964. "Multiple Choice Programming (A Procedure for Linear Programming with Zero-One Variables)," Operations Research, INFORMS, vol. 12(1), pages 122-138, February.
    4. Sankar Kumar Roy & Gurupada Maity & Gerhard Wilhelm Weber & Sirma Zeynep Alparslan Gök, 2017. "Conic scalarization approach to solve multi-choice multi-objective transportation problem with interval goal," Annals of Operations Research, Springer, vol. 253(1), pages 599-620, June.
    5. Y. P. Aneja & K. P. K. Nair, 1979. "Bicriteria Transportation Problem," Management Science, INFORMS, vol. 25(1), pages 73-78, January.
    6. Theodore S. Glickman & Paul D. Berger, 1977. "Technical Note—Cost/Completion-Date Tradeoffs in the Transportation Problem," Operations Research, INFORMS, vol. 25(1), pages 163-168, February.
    7. Chang, Ching-Ter, 2007. "Multi-choice goal programming," Omega, Elsevier, vol. 35(4), pages 389-396, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shalabh Singh & Sonia Singh, 2022. "Shipment in a multi-choice environment: a case study of shipping carriers in US," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(4), pages 1195-1219, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sanchita Sharma & Rita Malhotra & Shalini Arora, 2019. "Efficient triads related to transportation problem with common pivotal time," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(5), pages 1353-1360, October.
    2. Giri, Binoy Krishna & Roy, Sankar Kumar, 2024. "Fuzzy-random robust flexible programming on sustainable closed-loop renewable energy supply chain," Applied Energy, Elsevier, vol. 363(C).
    3. Gurupada Maity & Sankar Kumar Roy & Jose Luis Verdegay, 2019. "Time Variant Multi-Objective Interval-Valued Transportation Problem in Sustainable Development," Sustainability, MDPI, vol. 11(21), pages 1-15, November.
    4. Zheng, Xiao-Xue & Chang, Ching-Ter, 2021. "Topology design of remote patient monitoring system concerning qualitative and quantitative issues," Omega, Elsevier, vol. 98(C).
    5. S. Dutta & S. Acharya & Rajashree Mishra, 2016. "Genetic algorithm based fuzzy stochastic transportation programming problem with continuous random variables," OPSEARCH, Springer;Operational Research Society of India, vol. 53(4), pages 835-872, December.
    6. Yang, X. Q. & Goh, C. J., 1997. "A method for convex curve approximation," European Journal of Operational Research, Elsevier, vol. 97(1), pages 205-212, February.
    7. Derya Deliktaş, 2022. "Self-adaptive memetic algorithms for multi-objective single machine learning-effect scheduling problems with release times," Flexible Services and Manufacturing Journal, Springer, vol. 34(3), pages 748-784, September.
    8. Ghazale Kordi & Parsa Hasanzadeh-Moghimi & Mohammad Mahdi Paydar & Ebrahim Asadi-Gangraj, 2023. "A multi-objective location-routing model for dental waste considering environmental factors," Annals of Operations Research, Springer, vol. 328(1), pages 755-792, September.
    9. Singh, Preetvanti & Saxena, P. K., 2003. "The multiple objective time transportation problem with additional restrictions," European Journal of Operational Research, Elsevier, vol. 146(3), pages 460-476, May.
    10. Pankaj Gupta & Mukesh Mehlawat, 2007. "An algorithm for a fuzzy transportation problem to select a new type of coal for a steel manufacturing unit," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(1), pages 114-137, July.
    11. Wang, Gang, 2024. "Order assignment and two-stage integrated scheduling in fruit and vegetable supply chains," Omega, Elsevier, vol. 124(C).
    12. Shoshana Anily, 1996. "The vehicle‐routing problem with delivery and back‐haul options," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(3), pages 415-434, April.
    13. László A. Végh, 2017. "A Strongly Polynomial Algorithm for Generalized Flow Maximization," Mathematics of Operations Research, INFORMS, vol. 42(1), pages 179-211, January.
    14. Andrzej Jaszkiewicz & Thibaut Lust, 2017. "Proper balance between search towards and along Pareto front: biobjective TSP case study," Annals of Operations Research, Springer, vol. 254(1), pages 111-130, July.
    15. Hocine, Amine & Kouaissah, Noureddine & Bettahar, Samir & Benbouziane, Mohamed, 2018. "Optimizing renewable energy portfolios under uncertainty: A multi-segment fuzzy goal programming approach," Renewable Energy, Elsevier, vol. 129(PA), pages 540-552.
    16. Claassen, G.D.H., 2014. "Mixed integer (0–1) fractional programming for decision support in paper production industry," Omega, Elsevier, vol. 43(C), pages 21-29.
    17. Amirmahdi Tafreshian & Neda Masoud & Yafeng Yin, 2020. "Frontiers in Service Science: Ride Matching for Peer-to-Peer Ride Sharing: A Review and Future Directions," Service Science, INFORMS, vol. 12(2-3), pages 44-60, June.
    18. Hocine, Amine & Kouaissah, Noureddine, 2020. "XOR analytic hierarchy process and its application in the renewable energy sector," Omega, Elsevier, vol. 97(C).
    19. László A. Végh, 2014. "Concave Generalized Flows with Applications to Market Equilibria," Mathematics of Operations Research, INFORMS, vol. 39(2), pages 573-596, May.
    20. Anthony Przybylski & Xavier Gandibleux & Matthias Ehrgott, 2010. "A Recursive Algorithm for Finding All Nondominated Extreme Points in the Outcome Set of a Multiobjective Integer Programme," INFORMS Journal on Computing, INFORMS, vol. 22(3), pages 371-386, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:269:y:2018:i:1:d:10.1007_s10479-018-2825-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.