IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v25y1979i1p73-78.html
   My bibliography  Save this article

Bicriteria Transportation Problem

Author

Listed:
  • Y. P. Aneja

    (University of New Brunswick)

  • K. P. K. Nair

    (University of New Brunswick)

Abstract

In a transportation problem, generally, a single criterion of minimizing the total cost is considered. But in certain practical situations two or more objectives are relevant. For example, the objectives may be minimizations of total cost, consumption of certain scarce resources such as energy, total deterioration of goods during transportation, etc. Clearly, this problem can be solved using any of the multiobjective linear programming techniques; but the computational efforts needed would be prohibitive in many cases. The computational complexity in these techniques arises from the fact that each of the methods finds the set of nondominated extreme points in the solution space where such extreme points are, generally, many. Therefore, this paper develops a method of finding the nondominated extreme points in the criteria space. Such extreme points in the criteria space would be generally less and only these are needed while choosing a nondominated solution for implementation. The method involves a parametric search in the criteria space. Although the method is developed with respect to a bicriteria transportation problem, it is applicable to any bicriteria linear program in general. The bottleneck criterion included as a third objective is particularly significant in time bound transportation schedules. A numerical example is included.

Suggested Citation

  • Y. P. Aneja & K. P. K. Nair, 1979. "Bicriteria Transportation Problem," Management Science, INFORMS, vol. 25(1), pages 73-78, January.
  • Handle: RePEc:inm:ormnsc:v:25:y:1979:i:1:p:73-78
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.25.1.73
    Download Restriction: no

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:25:y:1979:i:1:p:73-78. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mirko Janc). General contact details of provider: http://edirc.repec.org/data/inforea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.