IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v14y2023i6d10.1007_s13198-023-02069-x.html
   My bibliography  Save this article

An aspect of bilevel interval linear fractional transportation problem with disparate flows: a fuzzy programming approach

Author

Listed:
  • Ritu Arora

    (University of Delhi)

  • Chandra K. Jaggi

    (University of Delhi)

Abstract

In present times, the e-commerce industry has become a crucial platform between the manufacturers and the common man. There might arise some situations in the market due to which manufacturers are not able to estimate the exact demand for their products, which may result in excess production. Moreover, the demand for the products in the market depends on the purchasing power of the common man. The decrease in purchasing power results in the low sale of the products. This uncertain situation of the market has been depicted by Bilevel Interval Linear Fractional Transportation Problem with distinct flows. The supply, demand, and cost coefficients in the objective functions at two levels are interval parameters. The two-level problem comprises of delivery of products from manufacturers to e-warehouses at the upper level and then to customers at the lower level. At upper level, flow is enhanced since the goods which are manufactured by the industries in large quantities need to be sold out. At lower level, flow is restricted while transporting the goods from e-warehouses to customers. Further, in order to promote the sale of the products, e-websites offer the customers free delivery of the products at their doorsteps. At the same time, they also pick the goods from them if the products are damaged or not of their choice or for any other reason. This in turn incurs the additional cost to the e-websites. The constraints in this defined problem are mixed. The interval parameters in the defined problem are tackled using the concept of centre and width of the interval. This converts the bilevel problem into a bilevel multi-objective transportation problem. A satisfactory solution to the problem is obtained by the fuzzy programming and goal programming approaches. A numerical is illustrated explaining the methodology. Further, the solutions are compared through these two techniques.

Suggested Citation

  • Ritu Arora & Chandra K. Jaggi, 2023. "An aspect of bilevel interval linear fractional transportation problem with disparate flows: a fuzzy programming approach," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(6), pages 2276-2288, December.
  • Handle: RePEc:spr:ijsaem:v:14:y:2023:i:6:d:10.1007_s13198-023-02069-x
    DOI: 10.1007/s13198-023-02069-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-023-02069-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-023-02069-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Interval uncertainty; Enhanced flow; Restricted flow; Linear fractional transportation problem; Bilevel programming; Fuzzy programming; Goal programming;
    All these keywords.

    JEL classification:

    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:14:y:2023:i:6:d:10.1007_s13198-023-02069-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.