IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v269y2018i1d10.1007_s10479-017-2551-y.html
   My bibliography  Save this article

Intuitionistic fuzzy multi-objective linear programming problem with various membership functions

Author

Listed:
  • Sujeet Kumar Singh

    (National University of Singapore)

  • Shiv Prasad Yadav

    (Indian Institute of Technology Roorkee)

Abstract

This study addresses intuitionistic fuzzy multi-objective linear programming problems using triangular intuitionistic fuzzy numbers with mixed constraints. We convert the problem into single objective fuzzy programming problem. Then using different types of membership functions (linear and nonlinear), we transform the problem into crisp linear/non-linear programming problem, which is solved by suitable crisp programming approaches. The methodology is demonstrated with the help of a numerical example and the usefulness of various membership functions is discussed.

Suggested Citation

  • Sujeet Kumar Singh & Shiv Prasad Yadav, 2018. "Intuitionistic fuzzy multi-objective linear programming problem with various membership functions," Annals of Operations Research, Springer, vol. 269(1), pages 693-707, October.
  • Handle: RePEc:spr:annopr:v:269:y:2018:i:1:d:10.1007_s10479-017-2551-y
    DOI: 10.1007/s10479-017-2551-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-017-2551-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-017-2551-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. E. Bellman & L. A. Zadeh, 1970. "Decision-Making in a Fuzzy Environment," Management Science, INFORMS, vol. 17(4), pages 141-164, December.
    2. Ennio Cascetta & Mariano Gallo & Bruno Montella, 2006. "Models and algorithms for the optimization of signal settings on urban networks with stochastic assignment models," Annals of Operations Research, Springer, vol. 144(1), pages 301-328, April.
    3. Panos Xidonas & Haris Doukas & George Mavrotas & Olena Pechak, 2016. "Environmental corporate responsibility for investments evaluation: an alternative multi-objective programming model," Annals of Operations Research, Springer, vol. 247(2), pages 395-413, December.
    4. K. Ganesan & P. Veeramani, 2006. "Fuzzy linear programs with trapezoidal fuzzy numbers," Annals of Operations Research, Springer, vol. 143(1), pages 305-315, March.
    5. Marc Asunción & Luis Castillo & Juan Fernández-Olivares & Oscar García-Pérez & Antonio González & Francisco Palao, 2007. "Handling fuzzy temporal constraints in a planning environment," Annals of Operations Research, Springer, vol. 155(1), pages 391-415, November.
    6. Das, S. K. & Goswami, A. & Alam, S. S., 1999. "Multiobjective transportation problem with interval cost, source and destination parameters," European Journal of Operational Research, Elsevier, vol. 117(1), pages 100-112, August.
    7. Sujeet Kumar Singh & Shiv Prasad Yadav, 2016. "A new approach for solving intuitionistic fuzzy transportation problem of type-2," Annals of Operations Research, Springer, vol. 243(1), pages 349-363, August.
    8. Zhibin Wu & Jiuping Xu & Zeshui Xu, 2016. "A multiple attribute group decision making framework for the evaluation of lean practices at logistics distribution centers," Annals of Operations Research, Springer, vol. 247(2), pages 735-757, December.
    9. Sujit De & Shib Sana, 2015. "Backlogging EOQ model for promotional effort and selling price sensitive demand- an intuitionistic fuzzy approach," Annals of Operations Research, Springer, vol. 233(1), pages 57-76, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Firoz Ahmad, 2022. "Interactive neutrosophic optimization technique for multiobjective programming problems: an application to pharmaceutical supply chain management," Annals of Operations Research, Springer, vol. 311(2), pages 551-585, April.
    2. Sumati Mahajan & S. K. Gupta, 2021. "On fully intuitionistic fuzzy multiobjective transportation problems using different membership functions," Annals of Operations Research, Springer, vol. 296(1), pages 211-241, January.
    3. Min-Chih Hsu & Hsuan-Shih Lee, 2023. "Applying AHP-IFNs-DEMATEL in Establishing a Supplier Selection Model: A Case Study of Offshore Wind Power Companies in Taiwan," Energies, MDPI, vol. 16(11), pages 1-23, June.
    4. Haiying Cheng & Zhun Luo & Nd Seliverstov, 2022. "A Study of Foam Bitumen Preparation for Effective Recycling of Pavement Layers," Sustainability, MDPI, vol. 14(15), pages 1-22, July.
    5. Jian-Jun Wang & Zongli Dai & Ai-Chih Chang & Jim Junmin Shi, 2022. "Surgical scheduling by Fuzzy model considering inpatient beds shortage under uncertain surgery durations," Annals of Operations Research, Springer, vol. 315(1), pages 463-505, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sujeet Kumar Singh & Shiv Prasad Yadav, 2016. "A new approach for solving intuitionistic fuzzy transportation problem of type-2," Annals of Operations Research, Springer, vol. 243(1), pages 349-363, August.
    2. Manuel Arana-Jiménez & Carmen Sánchez-Gil, 2020. "On generating the set of nondominated solutions of a linear programming problem with parameterized fuzzy numbers," Journal of Global Optimization, Springer, vol. 77(1), pages 27-52, May.
    3. S. K. Bharati & Rita Malhotra, 2017. "Two stage intuitionistic fuzzy time minimizing transportation problem based on generalized Zadeh’s extension principle," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1442-1449, November.
    4. Izaz Ullah Khan & Tahir Ahmad & Normah Maan, 2013. "A Simplified Novel Technique for Solving Fully Fuzzy Linear Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 159(2), pages 536-546, November.
    5. Sujit Kumar De & Shib Sankar Sana, 2018. "The (p, q, r, l) model for stochastic demand under Intuitionistic fuzzy aggregation with Bonferroni mean," Journal of Intelligent Manufacturing, Springer, vol. 29(8), pages 1753-1771, December.
    6. Sukharev, M.G. & Kulik, V.S., 2019. "The impact of information uncertainty on the problems of medium- and long-term planning of the operation modes of gas transport systems," Energy, Elsevier, vol. 184(C), pages 123-128.
    7. Sujit De & Shib Sana, 2015. "Backlogging EOQ model for promotional effort and selling price sensitive demand- an intuitionistic fuzzy approach," Annals of Operations Research, Springer, vol. 233(1), pages 57-76, October.
    8. P. Senthil Kumar, 2020. "Developing a New Approach to Solve Solid Assignment Problems Under Intuitionistic Fuzzy Environment," International Journal of Fuzzy System Applications (IJFSA), IGI Global, vol. 9(1), pages 1-34, January.
    9. Reza Ghanbari & Khatere Ghorbani-Moghadam & Nezam Mahdavi-Amiri, 2021. "A time variant multi-objective particle swarm optimization algorithm for solving fuzzy number linear programming problems using modified Kerre’s method," OPSEARCH, Springer;Operational Research Society of India, vol. 58(2), pages 403-424, June.
    10. Salma Iqbal & Naveed Yaqoob & Muhammad Gulistan, 2023. "An Investigation of Linear Diophantine Fuzzy Nonlinear Fractional Programming Problems," Mathematics, MDPI, vol. 11(15), pages 1-21, August.
    11. Jian-Jun Wang & Zongli Dai & Ai-Chih Chang & Jim Junmin Shi, 2022. "Surgical scheduling by Fuzzy model considering inpatient beds shortage under uncertain surgery durations," Annals of Operations Research, Springer, vol. 315(1), pages 463-505, August.
    12. Alexandra TKACENKO, 2016. "The Multi-Criteria Fractional Transportation Problem With Fuzzy "Bottleneck" Condition," ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, Faculty of Economic Cybernetics, Statistics and Informatics, vol. 50(3), pages 117-134.
    13. Abhishekh & A. K. Nishad, 2019. "A Novel Ranking Approach to Solving Fully LR-Intuitionistic Fuzzy Transportation Problems," New Mathematics and Natural Computation (NMNC), World Scientific Publishing Co. Pte. Ltd., vol. 15(01), pages 95-112, March.
    14. Vuciterna, Rina & Thomsen, Michael & Popp, Jennie & Musliu, Arben, 2017. "Efficiency and Competitiveness of Kosovo Raspberry Producers," 2017 Annual Meeting, February 4-7, 2017, Mobile, Alabama 252770, Southern Agricultural Economics Association.
    15. Collan, Mikael, 2008. "New Method for Real Option Valuation Using Fuzzy Numbers," Working Papers 466, IAMSR, Åbo Akademi.
    16. Wenyao Niu & Yuan Rong & Liying Yu & Lu Huang, 2022. "A Novel Hybrid Group Decision Making Approach Based on EDAS and Regret Theory under a Fermatean Cubic Fuzzy Environment," Mathematics, MDPI, vol. 10(17), pages 1-30, August.
    17. de Andres-Sanchez, Jorge, 2007. "Claim reserving with fuzzy regression and Taylor's geometric separation method," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 145-163, January.
    18. Mikhailov, L., 2004. "A fuzzy approach to deriving priorities from interval pairwise comparison judgements," European Journal of Operational Research, Elsevier, vol. 159(3), pages 687-704, December.
    19. Hongyi Sun & Bingqian Zhang & Wenbin Ni, 2022. "A Hybrid Model Based on SEM and Fuzzy TOPSIS for Supplier Selection," Mathematics, MDPI, vol. 10(19), pages 1-19, September.
    20. Liu, Yong-Jun & Zhang, Wei-Guo, 2015. "A multi-period fuzzy portfolio optimization model with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 242(3), pages 933-941.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:269:y:2018:i:1:d:10.1007_s10479-017-2551-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.