IDEAS home Printed from https://ideas.repec.org/a/spr/cejnor/v28y2020i3d10.1007_s10100-019-00611-6.html
   My bibliography  Save this article

Optimal value bounds in interval fractional linear programming and revenue efficiency measuring

Author

Listed:
  • Amin Mostafaee

    (Islamic Azad University)

  • Milan Hladík

    (Charles University)

Abstract

This paper deals with the fractional linear programming problem in which input data can vary in some given real compact intervals. The aim is to compute the exact range of the optimal value function. A method is provided for the situation in which the feasible set is described by a linear interval system. Moreover, certain dependencies between the coefficients in the nominators and denominators can be involved. Also, we extend this approach for situations in which the same vector appears in different terms in nominators and denominators. The applicability of the approaches developed is illustrated in the context of the analysis of hospital performance.

Suggested Citation

  • Amin Mostafaee & Milan Hladík, 2020. "Optimal value bounds in interval fractional linear programming and revenue efficiency measuring," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(3), pages 963-981, September.
  • Handle: RePEc:spr:cejnor:v:28:y:2020:i:3:d:10.1007_s10100-019-00611-6
    DOI: 10.1007/s10100-019-00611-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10100-019-00611-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10100-019-00611-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Entani, Tomoe & Tanaka, Hideo, 2006. "Improvement of efficiency intervals based on DEA by adjusting inputs and outputs," European Journal of Operational Research, Elsevier, vol. 172(3), pages 1004-1017, August.
    2. Lei Fang & Hecheng Li, 2013. "Lower bound of cost efficiency measure in DEA with incomplete price information," Journal of Productivity Analysis, Springer, vol. 40(2), pages 219-226, October.
    3. Mostafaee, A. & Saljooghi, F.H., 2010. "Cost efficiency measures in data envelopment analysis with data uncertainty," European Journal of Operational Research, Elsevier, vol. 202(2), pages 595-603, April.
    4. Kuosmanen, Timo & Post, Thierry, 2001. "Measuring economic efficiency with incomplete price information: With an application to European commercial banks," European Journal of Operational Research, Elsevier, vol. 134(1), pages 43-58, October.
    5. Jeyakumar, V. & Li, G.Y. & Srisatkunarajah, S., 2013. "Strong duality for robust minimax fractional programming problems," European Journal of Operational Research, Elsevier, vol. 228(2), pages 331-336.
    6. Shwartz, Michael & Burgess, James F. & Zhu, Joe, 2016. "A DEA based composite measure of quality and its associated data uncertainty interval for health care provider profiling and pay-for-performance," European Journal of Operational Research, Elsevier, vol. 253(2), pages 489-502.
    7. Sakawa, Masatoshi & Nishizaki, Ichiro & Uemura, Yoshio, 2001. "Interactive fuzzy programming for two-level linear and linear fractional production and assignment problems: A case study," European Journal of Operational Research, Elsevier, vol. 135(1), pages 142-157, November.
    8. Jahanshahloo, G.R. & Soleimani-damaneh, M. & Mostafaee, A., 2008. "A simplified version of the DEA cost efficiency model," European Journal of Operational Research, Elsevier, vol. 184(2), pages 814-815, January.
    9. Masahiro Inuiguchi & Fumiki Mizoshita, 2012. "Qualitative and quantitative data envelopment analysis with interval data," Annals of Operations Research, Springer, vol. 195(1), pages 189-220, May.
    10. J W Chinneck & K Ramadan, 2000. "Linear programming with interval coefficients," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(2), pages 209-220, February.
    11. A. Charnes & W. W. Cooper, 1962. "Programming with linear fractional functionals," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 9(3‐4), pages 181-186, September.
    12. Kuosmanen, Timo & Post, Thierry, 2003. "Measuring economic efficiency with incomplete price information," European Journal of Operational Research, Elsevier, vol. 144(2), pages 454-457, January.
    13. Camanho, A. S. & Dyson, R. G., 2005. "Cost efficiency measurement with price uncertainty: a DEA application to bank branch assessments," European Journal of Operational Research, Elsevier, vol. 161(2), pages 432-446, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Milan Hladík, 2023. "Various approaches to multiobjective linear programming problems with interval costs and interval weights," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(3), pages 713-731, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rashed Khanjani Shiraz & Adel Hatami-Marbini & Ali Emrouznejad & Hirofumi Fukuyama, 2020. "Chance-constrained cost efficiency in data envelopment analysis model with random inputs and outputs," Operational Research, Springer, vol. 20(3), pages 1863-1898, September.
    2. Fang, Lei & Li, Hecheng, 2012. "A comment on “cost efficiency in data envelopment analysis with data uncertainty”," European Journal of Operational Research, Elsevier, vol. 220(2), pages 588-590.
    3. Sahoo, Biresh K. & Mehdiloozad, Mahmood & Tone, Kaoru, 2014. "Cost, revenue and profit efficiency measurement in DEA: A directional distance function approach," European Journal of Operational Research, Elsevier, vol. 237(3), pages 921-931.
    4. Hatami-Marbini, Adel & Arabmaldar, Aliasghar, 2021. "Robustness of Farrell cost efficiency measurement under data perturbations: Evidence from a US manufacturing application," European Journal of Operational Research, Elsevier, vol. 295(2), pages 604-620.
    5. Blancard, Stéphane & Martin, Elsa, 2014. "Energy efficiency measurement in agriculture with imprecise energy content information," Energy Policy, Elsevier, vol. 66(C), pages 198-208.
    6. Mostafaee, A. & Saljooghi, F.H., 2010. "Cost efficiency measures in data envelopment analysis with data uncertainty," European Journal of Operational Research, Elsevier, vol. 202(2), pages 595-603, April.
    7. Fang, Lei & Li, Hecheng, 2015. "Cost efficiency in data envelopment analysis under the law of one price," European Journal of Operational Research, Elsevier, vol. 240(2), pages 488-492.
    8. Lei Fang & Hecheng Li, 2013. "Lower bound of cost efficiency measure in DEA with incomplete price information," Journal of Productivity Analysis, Springer, vol. 40(2), pages 219-226, October.
    9. Badunenko, Oleg & Fritsch, Michael & Stephan, Andreas, 2008. "Allocative efficiency measurement revisited--Do we really need input prices?," Economic Modelling, Elsevier, vol. 25(5), pages 1093-1109, September.
    10. Kerstens, Kristiaan & Sadeghi, Jafar & Toloo, Mehdi & Van de Woestyne, Ignace, 2022. "Procedures for ranking technical and cost efficient units: With a focus on nonconvexity," European Journal of Operational Research, Elsevier, vol. 300(1), pages 269-281.
    11. Wettemann, Patrick Johannes Christopher & Latacz-Lohmann, Uwe, 2017. "An efficiency-based concept to assess potential cost and greenhouse gas savings on German dairy farms," Agricultural Systems, Elsevier, vol. 152(C), pages 27-37.
    12. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    13. David Ennen & Irem Batool, 2017. "Airport Efficiency in Pakistan - A Data Envelopment Analysis with Weight Restrictions," Working Papers 25, Institute of Transport Economics, University of Muenster.
    14. Kuosmanen, Timo & Cherchye, Laurens & Sipilainen, Timo, 2006. "The law of one price in data envelopment analysis: Restricting weight flexibility across firms," European Journal of Operational Research, Elsevier, vol. 170(3), pages 735-757, May.
    15. Ennen, David & Batool, Irem, 2018. "Airport efficiency in Pakistan - A Data Envelopment Analysis with weight restrictions," Journal of Air Transport Management, Elsevier, vol. 69(C), pages 205-212.
    16. Sam Park, K. & Cho, Jin-Wan, 2011. "Pro-efficiency: Data speak more than technical efficiency," European Journal of Operational Research, Elsevier, vol. 215(1), pages 301-308, November.
    17. Liao, Hua & Du, Yun-Fei & Huang, Zhimin & Wei, Yi-Ming, 2016. "Measuring energy economic efficiency: A mathematical programming approach," Applied Energy, Elsevier, vol. 179(C), pages 479-487.
    18. Benjamin Hampf, 2014. "Separating environmental efficiency into production and abatement efficiency: a nonparametric model with application to US power plants," Journal of Productivity Analysis, Springer, vol. 41(3), pages 457-473, June.
    19. Fukuyama, Hirofumi & Shiraz, Rashed Khanjani, 2015. "Cost-effectiveness measures on convex and nonconvex technologies," European Journal of Operational Research, Elsevier, vol. 246(1), pages 307-319.
    20. Youchao Tan & Yang Zhang & Roohollah Khodaverdi, 2017. "Service performance evaluation using data envelopment analysis and balance scorecard approach: an application to automotive industry," Annals of Operations Research, Springer, vol. 248(1), pages 449-470, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:cejnor:v:28:y:2020:i:3:d:10.1007_s10100-019-00611-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.