IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v323y2022ics0306261922008546.html
   My bibliography  Save this article

Power-to-gas: Decarbonization of the European electricity system with synthetic methane

Author

Listed:
  • Yilmaz, Hasan Ümitcan
  • Kimbrough, Steven O.
  • van Dinther, Clemens
  • Keles, Dogan

Abstract

The general conclusion of climate change studies is the necessity of eliminating net CO2 emissions in general and from the electric power systems in particular by 2050. The share of renewable energy is increasing worldwide, but due to the intermittent nature of wind and solar power, a lack of system flexibility is already hampering the further integration of renewable energy in some countries. In this study, we analyze if and how combinations of carbon pricing and power-to-gas (PtG) generation in the form of green power-to-hydrogen followed by methanation (which we refer to as PtG throughout) using captured CO2 emissions can provide transitions to deep decarbonization of energy systems. To this end, we focus on the economics of deep decarbonization of the European electricity system with the help of an energy system model. In different scenario analyses, we find that a CO2 price of 160 €/t (by 2050) is on its own not sufficient to decarbonize the electricity sector, but that a CO2 price path of 125 (by 2040) up to 160 €/t (by 2050), combined with PtG technologies, can lead to an economically feasible decarbonization of the European electricity system by 2050. These results are robust to higher than anticipated PtG costs.

Suggested Citation

  • Yilmaz, Hasan Ümitcan & Kimbrough, Steven O. & van Dinther, Clemens & Keles, Dogan, 2022. "Power-to-gas: Decarbonization of the European electricity system with synthetic methane," Applied Energy, Elsevier, vol. 323(C).
  • Handle: RePEc:eee:appene:v:323:y:2022:i:c:s0306261922008546
    DOI: 10.1016/j.apenergy.2022.119538
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922008546
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119538?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lynch, Muireann & Devine, Mel T. & Bertsch, Valentin, 2019. "The role of power-to-gas in the future energy system: Market and portfolio effects," Energy, Elsevier, vol. 185(C), pages 1197-1209.
    2. Harvey J. Greenberg, 1994. "How to Analyze the Results of Linear Programs—Part 4: Forcing Substructures," Interfaces, INFORMS, vol. 24(1), pages 121-130, February.
    3. Tvinnereim, Endre & Mehling, Michael, 2018. "Carbon pricing and deep decarbonisation," Energy Policy, Elsevier, vol. 121(C), pages 185-189.
    4. A. M. Geoffrion & R. Nauss, 1977. "Exceptional Paper--Parametric and Postoptimality Analysis in Integer Linear Programming," Management Science, INFORMS, vol. 23(5), pages 453-466, January.
    5. Moeller, Caroline & Meiss, Jan & Mueller, Berit & Hlusiak, Markus & Breyer, Christian & Kastner, Michael & Twele, Jochen, 2014. "Transforming the electricity generation of the Berlin–Brandenburg region, Germany," Renewable Energy, Elsevier, vol. 72(C), pages 39-50.
    6. Marco Ratto, 2008. "Analysing DSGE Models with Global Sensitivity Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 31(2), pages 115-139, March.
    7. Markus Reuß & Paris Dimos & Aline Léon & Thomas Grube & Martin Robinius & Detlef Stolten, 2021. "Hydrogen Road Transport Analysis in the Energy System: A Case Study for Germany through 2050," Energies, MDPI, vol. 14(11), pages 1-17, May.
    8. Mesfun, Sennai & Sanchez, Daniel L. & Leduc, Sylvain & Wetterlund, Elisabeth & Lundgren, Joakim & Biberacher, Markus & Kraxner, Florian, 2017. "Power-to-gas and power-to-liquid for managing renewable electricity intermittency in the Alpine Region," Renewable Energy, Elsevier, vol. 107(C), pages 361-372.
    9. O. Schmidt & A. Hawkes & A. Gambhir & I. Staffell, 2017. "The future cost of electrical energy storage based on experience rates," Nature Energy, Nature, vol. 2(8), pages 1-8, August.
    10. Quarton, Christopher J. & Samsatli, Sheila, 2018. "Power-to-gas for injection into the gas grid: What can we learn from real-life projects, economic assessments and systems modelling?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 302-316.
    11. Hobbs, Benjamin F., 1995. "Optimization methods for electric utility resource planning," European Journal of Operational Research, Elsevier, vol. 83(1), pages 1-20, May.
    12. Ben Wealer & Simon Bauer & Leonard Göke & Christian von Hirschhausen & Claudia Kemfert, 2019. "Zu teuer und gefährlich: Atomkraft ist keine Option für eine klimafreundliche Energieversorgung," DIW Wochenbericht, DIW Berlin, German Institute for Economic Research, vol. 86(30), pages 511-520.
    13. Blanco, Herib & Faaij, André, 2018. "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1049-1086.
    14. Scholz, Yvonne & Gils, Hans Christian & Pietzcker, Robert C., 2017. "Application of a high-detail energy system model to derive power sector characteristics at high wind and solar shares," Energy Economics, Elsevier, vol. 64(C), pages 568-582.
    15. Gorre, Jachin & Ortloff, Felix & van Leeuwen, Charlotte, 2019. "Production costs for synthetic methane in 2030 and 2050 of an optimized Power-to-Gas plant with intermediate hydrogen storage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    16. Geth, F. & Brijs, T. & Kathan, J. & Driesen, J. & Belmans, R., 2015. "An overview of large-scale stationary electricity storage plants in Europe: Current status and new developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1212-1227.
    17. Gils, Hans Christian & Scholz, Yvonne & Pregger, Thomas & Luca de Tena, Diego & Heide, Dominik, 2017. "Integrated modelling of variable renewable energy-based power supply in Europe," Energy, Elsevier, vol. 123(C), pages 173-188.
    18. Rabiee, Abbas & Keane, Andrew & Soroudi, Alireza, 2021. "Technical barriers for harnessing the green hydrogen: A power system perspective," Renewable Energy, Elsevier, vol. 163(C), pages 1580-1587.
    19. Götz, Manuel & Lefebvre, Jonathan & Mörs, Friedemann & McDaniel Koch, Amy & Graf, Frank & Bajohr, Siegfried & Reimert, Rainer & Kolb, Thomas, 2016. "Renewable Power-to-Gas: A technological and economic review," Renewable Energy, Elsevier, vol. 85(C), pages 1371-1390.
    20. Robert Lempert, 2013. "Scenarios that illuminate vulnerabilities and robust responses," Climatic Change, Springer, vol. 117(4), pages 627-646, April.
    21. Keles, Dogan & Yilmaz, Hasan Ümitcan, 2020. "Decarbonisation through coal phase-out in Germany and Europe — Impact on Emissions, electricity prices and power production," Energy Policy, Elsevier, vol. 141(C).
    22. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    23. Valerie Eveloy & Tesfaldet Gebreegziabher, 2018. "A Review of Projected Power-to-Gas Deployment Scenarios," Energies, MDPI, vol. 11(7), pages 1-52, July.
    24. Harvey J. Greenberg, 1993. "How to Analyze the Results of Linear Programs—Part 2: Price Interpretation," Interfaces, INFORMS, vol. 23(5), pages 97-114, October.
    25. Harvey J. Greenberg, 1993. "How to Analyze the Results of Linear Programs—Part 3: Infeasibility Diagnosis," Interfaces, INFORMS, vol. 23(6), pages 120-139, December.
    26. Mazza, Andrea & Bompard, Ettore & Chicco, Gianfranco, 2018. "Applications of power to gas technologies in emerging electrical systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 794-806.
    27. Roach, Martin & Meeus, Leonardo, 2020. "The welfare and price effects of sector coupling with power-to-gas," Energy Economics, Elsevier, vol. 86(C).
    28. Capros, Pantelis & Zazias, Georgios & Evangelopoulou, Stavroula & Kannavou, Maria & Fotiou, Theofano & Siskos, Pelopidas & De Vita, Alessia & Sakellaris, Konstantinos, 2019. "Energy-system modelling of the EU strategy towards climate-neutrality," Energy Policy, Elsevier, vol. 134(C).
    29. Harvey J. Greenberg, 1993. "How to Analyze the Results of Linear Programs—Part 1: Preliminaries," Interfaces, INFORMS, vol. 23(4), pages 56-67, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kumaran Kadirgama & Omar I. Awad & M. N. Mohammed & Hai Tao & Ali A. H. Karah Bash, 2023. "Sustainable Green Energy Management: Optimizing Scheduling of Multi-Energy Systems Considered Energy Cost and Emission Using Attractive Repulsive Shuffled Frog-Leaping," Sustainability, MDPI, vol. 15(14), pages 1-19, July.
    2. Osama A. Marzouk, 2024. "Expectations for the Role of Hydrogen and Its Derivatives in Different Sectors through Analysis of the Four Energy Scenarios: IEA-STEPS, IEA-NZE, IRENA-PES, and IRENA-1.5°C," Energies, MDPI, vol. 17(3), pages 1-34, January.
    3. Muqing Wu & Qingsu He & Yuping Liu & Ziqiang Zhang & Zhongwen Shi & Yifan He, 2022. "Machine Learning Techniques for Decarbonizing and Managing Renewable Energy Grids," Sustainability, MDPI, vol. 14(21), pages 1-13, October.
    4. Haozhe Yang & Ranjit Deshmukh & Sangwon Suh, 2023. "Global transcontinental power pools for low-carbon electricity," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Raphael Souza de Oliveira & Meire Jane Lima de Oliveira & Erick Giovani Sperandio Nascimento & Renelson Sampaio & Aloísio Santos Nascimento Filho & Hugo Saba, 2023. "Renewable Energy Generation Technologies for Decarbonizing Urban Vertical Buildings: A Path towards Net Zero," Sustainability, MDPI, vol. 15(17), pages 1-19, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefan Arens & Sunke Schlüters & Benedikt Hanke & Karsten von Maydell & Carsten Agert, 2020. "Sustainable Residential Energy Supply: A Literature Review-Based Morphological Analysis," Energies, MDPI, vol. 13(2), pages 1-28, January.
    2. Bucksteeg, Michael & Mikurda, Jennifer & Weber, Christoph, 2023. "Integration of power-to-gas into electricity markets during the ramp-up phase—Assessing the role of carbon pricing," Energy Economics, Elsevier, vol. 124(C).
    3. Kolb, Sebastian & Plankenbühler, Thomas & Frank, Jonas & Dettelbacher, Johannes & Ludwig, Ralf & Karl, Jürgen & Dillig, Marius, 2021. "Scenarios for the integration of renewable gases into the German natural gas market – A simulation-based optimisation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    4. Andrade, Carlos & Selosse, Sandrine & Maïzi, Nadia, 2022. "The role of power-to-gas in the integration of variable renewables," Applied Energy, Elsevier, vol. 313(C).
    5. Fambri, Gabriele & Diaz-Londono, Cesar & Mazza, Andrea & Badami, Marco & Sihvonen, Teemu & Weiss, Robert, 2022. "Techno-economic analysis of Power-to-Gas plants in a gas and electricity distribution network system with high renewable energy penetration," Applied Energy, Elsevier, vol. 312(C).
    6. Zoltán Csedő & Botond Sinóros-Szabó & Máté Zavarkó, 2020. "Seasonal Energy Storage Potential Assessment of WWTPs with Power-to-Methane Technology," Energies, MDPI, vol. 13(18), pages 1-21, September.
    7. Farrell, Niall, 2023. "Policy design for green hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    8. Ikäheimo, Jussi & Weiss, Robert & Kiviluoma, Juha & Pursiheimo, Esa & Lindroos, Tomi J., 2022. "Impact of power-to-gas on the cost and design of the future low-carbon urban energy system," Applied Energy, Elsevier, vol. 305(C).
    9. Carlos V. Miguel & Adélio Mendes & Luís M. Madeira, 2018. "An Overview of the Portuguese Energy Sector and Perspectives for Power-to-Gas Implementation," Energies, MDPI, vol. 11(12), pages 1-20, November.
    10. Capros, Pantelis & Zazias, Georgios & Evangelopoulou, Stavroula & Kannavou, Maria & Fotiou, Theofano & Siskos, Pelopidas & De Vita, Alessia & Sakellaris, Konstantinos, 2019. "Energy-system modelling of the EU strategy towards climate-neutrality," Energy Policy, Elsevier, vol. 134(C).
    11. Maeder, Mattia & Weiss, Olga & Boulouchos, Konstantinos, 2021. "Assessing the need for flexibility technologies in decarbonized power systems: A new model applied to Central Europe," Applied Energy, Elsevier, vol. 282(PA).
    12. Wyrwa, Artur & Suwała, Wojciech & Pluta, Marcin & Raczyński, Maciej & Zyśk, Janusz & Tokarski, Stanisław, 2022. "A new approach for coupling the short- and long-term planning models to design a pathway to carbon neutrality in a coal-based power system," Energy, Elsevier, vol. 239(PE).
    13. Blanco, Herib & Nijs, Wouter & Ruf, Johannes & Faaij, André, 2018. "Potential of Power-to-Methane in the EU energy transition to a low carbon system using cost optimization," Applied Energy, Elsevier, vol. 232(C), pages 323-340.
    14. Mengzhu Xiao & Manuel Wetzel & Thomas Pregger & Sonja Simon & Yvonne Scholz, 2020. "Modeling the Supply of Renewable Electricity to Metropolitan Regions in China," Energies, MDPI, vol. 13(12), pages 1-31, June.
    15. Daraei, Mahsa & Campana, Pietro Elia & Thorin, Eva, 2020. "Power-to-hydrogen storage integrated with rooftop photovoltaic systems and combined heat and power plants," Applied Energy, Elsevier, vol. 276(C).
    16. Pastore, Lorenzo Mario & Lo Basso, Gianluigi & Sforzini, Matteo & de Santoli, Livio, 2022. "Technical, economic and environmental issues related to electrolysers capacity targets according to the Italian Hydrogen Strategy: A critical analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    17. Klöckner, Kai & Letmathe, Peter, 2020. "Is the coherence of coal phase-out and electrolytic hydrogen production the golden path to effective decarbonisation?," Applied Energy, Elsevier, vol. 279(C).
    18. Schlund, David & Schönfisch, Max, 2021. "Analysing the Impact of a Renewable Hydrogen Quota on the European Electricity and Natural Gas Markets," EWI Working Papers 2021-3, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    19. Chauvy, Remi & Dubois, Lionel & Lybaert, Paul & Thomas, Diane & De Weireld, Guy, 2020. "Production of synthetic natural gas from industrial carbon dioxide," Applied Energy, Elsevier, vol. 260(C).
    20. Romeo, Luis M. & Cavana, Marco & Bailera, Manuel & Leone, Pierluigi & Peña, Begoña & Lisbona, Pilar, 2022. "Non-stoichiometric methanation as strategy to overcome the limitations of green hydrogen injection into the natural gas grid," Applied Energy, Elsevier, vol. 309(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:323:y:2022:i:c:s0306261922008546. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.