IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v72y2014icp39-50.html
   My bibliography  Save this article

Transforming the electricity generation of the Berlin–Brandenburg region, Germany

Author

Listed:
  • Moeller, Caroline
  • Meiss, Jan
  • Mueller, Berit
  • Hlusiak, Markus
  • Breyer, Christian
  • Kastner, Michael
  • Twele, Jochen

Abstract

We present possible steps for Germany's capital region for a pathway towards high-level renewable energy contributions. To this end, we give an overview of the current energy policy and status of electricity generation and demand of two federal states: the capital city Berlin and the surrounding state of Brandenburg. In a second step we present alternative, feasible scenarios with focus on the years 2020 and 2030. All scenarios were numerically evaluated in hourly time steps using a cost optimisation approach. The required installed capacities in an 80% renewables scenario in the year 2020 consist of 8.8 GW wind energy, 4.8 GW photovoltaics, 0.4 GWel bioenergy, 0.6 GWel methanation and a gas storage capacity of 180 GWhth. In order to meet a renewable electricity share of 100% in 2030, approximately 9.5 GW wind energy, 10.2 GW photovoltaics and 0.4 GWel bioenergy will be needed, complemented by a methanation capacity of about 1.5 GWel and gas storage of about 530 GWhth. In 2030, an additional 11 GWhel of battery storage capacity will be required. Approximately 3 GW of thermal gas power plants will be necessary to cover the residual load in both scenarios. Furthermore, we studied the transmission capacities of extra-high voltage transmission lines in a second simulation and found them to be sufficient for the energy distribution within the investigated region.

Suggested Citation

  • Moeller, Caroline & Meiss, Jan & Mueller, Berit & Hlusiak, Markus & Breyer, Christian & Kastner, Michael & Twele, Jochen, 2014. "Transforming the electricity generation of the Berlin–Brandenburg region, Germany," Renewable Energy, Elsevier, vol. 72(C), pages 39-50.
  • Handle: RePEc:eee:renene:v:72:y:2014:i:c:p:39-50
    DOI: 10.1016/j.renene.2014.06.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114003826
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.06.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kolb, Sebastian & Plankenbühler, Thomas & Frank, Jonas & Dettelbacher, Johannes & Ludwig, Ralf & Karl, Jürgen & Dillig, Marius, 2021. "Scenarios for the integration of renewable gases into the German natural gas market – A simulation-based optimisation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    2. Karl-Kiên Cao & Johannes Metzdorf & Sinan Birbalta, 2018. "Incorporating Power Transmission Bottlenecks into Aggregated Energy System Models," Sustainability, MDPI, vol. 10(6), pages 1-32, June.
    3. Lynch, Muireann Á & Devine, Mel & Bertsch, Valentin, 2018. "The role of power-to-gas in the future energy system: how much is needed and who wants to invest?," Papers WP590, Economic and Social Research Institute (ESRI).
    4. Yilmaz, Hasan Ümitcan & Kimbrough, Steven O. & van Dinther, Clemens & Keles, Dogan, 2022. "Power-to-gas: Decarbonization of the European electricity system with synthetic methane," Applied Energy, Elsevier, vol. 323(C).
    5. Bucksteeg, Michael & Mikurda, Jennifer & Weber, Christoph, 2021. "Market integration of power-to-gas during the energy transition—Assessing the role of carbon pricing," EconStor Preprints 242982, ZBW - Leibniz Information Centre for Economics.
    6. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    7. Jovanović, Marina & Bakić, Vukman & Škobalj, Predrag & Cvetinović, Dejan & Erić, Aleksandar & Živković, Nikola & Duić, Neven, 2023. "Scenarios for transitioning the electricity sector of the Republic of Serbia to sustainable climate neutrality by 2050," Utilities Policy, Elsevier, vol. 85(C).
    8. Andrade, Carlos & Selosse, Sandrine & Maïzi, Nadia, 2022. "The role of power-to-gas in the integration of variable renewables," Applied Energy, Elsevier, vol. 313(C).
    9. Badami, Marco & Fambri, Gabriele, 2019. "Optimising energy flows and synergies between energy networks," Energy, Elsevier, vol. 173(C), pages 400-412.
    10. Bucksteeg, Michael & Mikurda, Jennifer & Weber, Christoph, 2023. "Integration of power-to-gas into electricity markets during the ramp-up phase—Assessing the role of carbon pricing," Energy Economics, Elsevier, vol. 124(C).
    11. Goraj, Rafał & Kiciński, Marcin & Ślefarski, Rafał & Duczkowska, Anna, 2023. "Validity of decision criteria for selecting power-to-gas projects in Poland," Utilities Policy, Elsevier, vol. 83(C).
    12. Ikäheimo, Jussi & Weiss, Robert & Kiviluoma, Juha & Pursiheimo, Esa & Lindroos, Tomi J., 2022. "Impact of power-to-gas on the cost and design of the future low-carbon urban energy system," Applied Energy, Elsevier, vol. 305(C).
    13. Renn, Ortwin & Marshall, Jonathan Paul, 2016. "Coal, nuclear and renewable energy policies in Germany: From the 1950s to the “Energiewende”," Energy Policy, Elsevier, vol. 99(C), pages 224-232.
    14. Jann Michael Weinand & Maximilian Hoffmann & Jan Gopfert & Tom Terlouw & Julian Schonau & Patrick Kuckertz & Russell McKenna & Leander Kotzur & Jochen Lin{ss}en & Detlef Stolten, 2022. "Global LCOEs of decentralized off-grid renewable energy systems," Papers 2212.12742, arXiv.org, revised Mar 2023.
    15. Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2020. "Reviewing energy system modelling of decentralized energy autonomy," Energy, Elsevier, vol. 203(C).
    16. Gorre, Jachin & Ruoss, Fabian & Karjunen, Hannu & Schaffert, Johannes & Tynjälä, Tero, 2020. "Cost benefits of optimizing hydrogen storage and methanation capacities for Power-to-Gas plants in dynamic operation," Applied Energy, Elsevier, vol. 257(C).
    17. Blanco, Herib & Faaij, André, 2018. "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1049-1086.
    18. Blanco, Herib & Nijs, Wouter & Ruf, Johannes & Faaij, André, 2018. "Potential of Power-to-Methane in the EU energy transition to a low carbon system using cost optimization," Applied Energy, Elsevier, vol. 232(C), pages 323-340.
    19. Solomon, A.A. & Bogdanov, Dmitrii & Breyer, Christian, 2019. "Curtailment-storage-penetration nexus in the energy transition," Applied Energy, Elsevier, vol. 235(C), pages 1351-1368.
    20. Lynch, Muireann & Devine, Mel T. & Bertsch, Valentin, 2019. "The role of power-to-gas in the future energy system: Market and portfolio effects," Energy, Elsevier, vol. 185(C), pages 1197-1209.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:72:y:2014:i:c:p:39-50. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.