IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v304y2021ics030626192101182x.html
   My bibliography  Save this article

Transition towards solar Photovoltaic Self-Consumption policies with Batteries: From the perspective of distribution networks

Author

Listed:
  • Alnaser, Sahban W.
  • Althaher, Sereen Z.
  • Long, Chao
  • Zhou, Yue
  • Wu, Jianzhong
  • Hamdan, Reem

Abstract

The transition towards low-carbon energy systems requires increasing the contribution of residential Photovoltaic (PV) in the energy consumption needs (i.e., PV self-consumption). For this purpose, the adoption of PV self-consumption policies as alternatives to the current net-metering policy may support harnessing batteries to improve PV self-consumption. However, the technical impacts of PV policies on distribution networks have to be adequately assessed and mitigated. To do so, a two-stage planning framework is proposed. The first stage is an optimization approach that determines the best sizes of PV and batteries based on the adopted PV policy. The second stage assesses the impacts of the resulting sizes on distribution networks using Monte-Carlo simulations to cope with uncertainties in demand and generation. The framework is applied on real medium and low voltage distribution networks from the south of Jordan. For the net-metering, the results show that the uptake of residential PV penetration above 40% will result in voltage issues. It is also found that the adoption of batteries for the benefits of customers (i.e., reduce electricity bills) will not mitigate the PV impacts for PV penetration above 60%. Further, the results demonstrate the important role of distribution network operators to manage the uptake of batteries for the benefits of customers and distribution networks. Network operators can support customers to adopt larger sizes of batteries to achieve the desired PV self-consumption in return of controlling the batteries to solve network issues. This facilitates the uptake of 100% PV penetration and improves PV self-consumption to 50%.

Suggested Citation

  • Alnaser, Sahban W. & Althaher, Sereen Z. & Long, Chao & Zhou, Yue & Wu, Jianzhong & Hamdan, Reem, 2021. "Transition towards solar Photovoltaic Self-Consumption policies with Batteries: From the perspective of distribution networks," Applied Energy, Elsevier, vol. 304(C).
  • Handle: RePEc:eee:appene:v:304:y:2021:i:c:s030626192101182x
    DOI: 10.1016/j.apenergy.2021.117859
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192101182X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117859?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Georgios C. Christoforidis & Ioannis P. Panapakidis & Theofilos A. Papadopoulos & Grigoris K. Papagiannis & Ioannis Koumparou & Maria Hadjipanayi & George E. Georghiou, 2016. "A Model for the Assessment of Different Net-Metering Policies," Energies, MDPI, vol. 9(4), pages 1-24, April.
    2. Karasu, Seçkin & Altan, Aytaç & Bekiros, Stelios & Ahmad, Wasim, 2020. "A new forecasting model with wrapper-based feature selection approach using multi-objective optimization technique for chaotic crude oil time series," Energy, Elsevier, vol. 212(C).
    3. Eid, Cherrelle & Reneses Guillén, Javier & Frías Marín, Pablo & Hakvoort, Rudi, 2014. "The economic effect of electricity net-metering with solar PV: Consequences for network cost recovery, cross subsidies and policy objectives," Energy Policy, Elsevier, vol. 75(C), pages 244-254.
    4. Schopfer, S. & Tiefenbeck, V. & Staake, T., 2018. "Economic assessment of photovoltaic battery systems based on household load profiles," Applied Energy, Elsevier, vol. 223(C), pages 229-248.
    5. Gregorio Fernández & Noemi Galan & Daniel Marquina & Diego Martínez & Alberto Sanchez & Pablo López & Hans Bludszuweit & Jorge Rueda, 2020. "Photovoltaic Generation Impact Analysis in Low Voltage Distribution Grids," Energies, MDPI, vol. 13(17), pages 1-27, August.
    6. López Prol, Javier & Steininger, Karl W., 2017. "Photovoltaic self-consumption regulation in Spain: Profitability analysis and alternative regulation schemes," Energy Policy, Elsevier, vol. 108(C), pages 742-754.
    7. Matisoff, Daniel C. & Johnson, Erik P., 2017. "The comparative effectiveness of residential solar incentives," Energy Policy, Elsevier, vol. 108(C), pages 44-54.
    8. Shaw-Williams, Damian & Susilawati, Connie, 2020. "A techno-economic evaluation of Virtual Net Metering for the Australian community housing sector," Applied Energy, Elsevier, vol. 261(C).
    9. Zakeri, Behnam & Cross, Samuel & Dodds, Paul.E. & Gissey, Giorgio Castagneto, 2021. "Policy options for enhancing economic profitability of residential solar photovoltaic with battery energy storage," Applied Energy, Elsevier, vol. 290(C).
    10. Nyholm, Emil & Goop, Joel & Odenberger, Mikael & Johnsson, Filip, 2016. "Solar photovoltaic-battery systems in Swedish households – Self-consumption and self-sufficiency," Applied Energy, Elsevier, vol. 183(C), pages 148-159.
    11. Sani Hassan, Abubakar & Cipcigan, Liana & Jenkins, Nick, 2017. "Optimal battery storage operation for PV systems with tariff incentives," Applied Energy, Elsevier, vol. 203(C), pages 422-441.
    12. von Appen, J. & Braun, M., 2018. "Interdependencies between self-sufficiency preferences, techno-economic drivers for investment decisions and grid integration of residential PV storage systems," Applied Energy, Elsevier, vol. 229(C), pages 1140-1151.
    13. Sharma, Vanika & Haque, Mohammed H. & Aziz, Syed Mahfuzul, 2019. "Energy cost minimization for net zero energy homes through optimal sizing of battery storage system," Renewable Energy, Elsevier, vol. 141(C), pages 278-286.
    14. Barzegkar-Ntovom, Georgios A. & Chatzigeorgiou, Nikolas G. & Nousdilis, Angelos I. & Vomva, Styliani A. & Kryonidis, Georgios C. & Kontis, Eleftherios O. & Georghiou, George E. & Christoforidis, Georg, 2020. "Assessing the viability of battery energy storage systems coupled with photovoltaics under a pure self-consumption scheme," Renewable Energy, Elsevier, vol. 152(C), pages 1302-1309.
    15. Heleno, Miguel & Sehloff, David & Coelho, Antonio & Valenzuela, Alan, 2020. "Probabilistic impact of electricity tariffs on distribution grids considering adoption of solar and storage technologies," Applied Energy, Elsevier, vol. 279(C).
    16. Brusco, Giovanni & Burgio, Alessandro & Menniti, Daniele & Pinnarelli, Anna & Sorrentino, Nicola, 2016. "The economic viability of a feed-in tariff scheme that solely rewards self-consumption to promote the use of integrated photovoltaic battery systems," Applied Energy, Elsevier, vol. 183(C), pages 1075-1085.
    17. Avilés A., Camilo & Oliva H., Sebastian & Watts, David, 2019. "Single-dwelling and community renewable microgrids: Optimal sizing and energy management for new business models," Applied Energy, Elsevier, vol. 254(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Łukasz Mazur & Sławomir Cieślik & Stanislaw Czapp, 2023. "Trends in Locally Balanced Energy Systems without the Use of Fossil Fuels: A Review," Energies, MDPI, vol. 16(12), pages 1-31, June.
    2. Qusay Hassan & Bartosz Pawela & Ali Hasan & Marek Jaszczur, 2022. "Optimization of Large-Scale Battery Storage Capacity in Conjunction with Photovoltaic Systems for Maximum Self-Sustainability," Energies, MDPI, vol. 15(10), pages 1-21, May.
    3. Muhammed Sait Aydin & Sahban W. Alnaser & Sereen Z. Althaher, 2022. "Using OLTC-Fitted Distribution Transformer to Increase Residential PV Hosting Capacity: Decentralized Voltage Management Approach," Energies, MDPI, vol. 15(13), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D'Adamo, Idiano & Gastaldi, Massimo & Morone, Piergiuseppe, 2022. "The impact of a subsidized tax deduction on residential solar photovoltaic-battery energy storage systems," Utilities Policy, Elsevier, vol. 75(C).
    2. Gallego-Castillo, Cristobal & Heleno, Miguel & Victoria, Marta, 2021. "Self-consumption for energy communities in Spain: A regional analysis under the new legal framework," Energy Policy, Elsevier, vol. 150(C).
    3. Freitas Gomes, Icaro Silvestre & Perez, Yannick & Suomalainen, Emilia, 2020. "Coupling small batteries and PV generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    4. Nina Munzke & Felix Büchle & Anna Smith & Marc Hiller, 2021. "Influence of Efficiency, Aging and Charging Strategy on the Economic Viability and Dimensioning of Photovoltaic Home Storage Systems," Energies, MDPI, vol. 14(22), pages 1-46, November.
    5. Roberts, Mike B. & Bruce, Anna & MacGill, Iain, 2019. "Impact of shared battery energy storage systems on photovoltaic self-consumption and electricity bills in apartment buildings," Applied Energy, Elsevier, vol. 245(C), pages 78-95.
    6. Azuatalam, Donald & Paridari, Kaveh & Ma, Yiju & Förstl, Markus & Chapman, Archie C. & Verbič, Gregor, 2019. "Energy management of small-scale PV-battery systems: A systematic review considering practical implementation, computational requirements, quality of input data and battery degradation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 555-570.
    7. Han, Xuejiao & Garrison, Jared & Hug, Gabriela, 2022. "Techno-economic analysis of PV-battery systems in Switzerland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    8. Barbour, Edward & González, Marta C., 2018. "Projecting battery adoption in the prosumer era," Applied Energy, Elsevier, vol. 215(C), pages 356-370.
    9. Zou, Bin & Peng, Jinqing & Li, Sihui & Li, Yi & Yan, Jinyue & Yang, Hongxing, 2022. "Comparative study of the dynamic programming-based and rule-based operation strategies for grid-connected PV-battery systems of office buildings," Applied Energy, Elsevier, vol. 305(C).
    10. Heleno, Miguel & Sehloff, David & Coelho, Antonio & Valenzuela, Alan, 2020. "Probabilistic impact of electricity tariffs on distribution grids considering adoption of solar and storage technologies," Applied Energy, Elsevier, vol. 279(C).
    11. Federica Cucchiella & Idiano D’Adamo & Massimo Gastaldi & Vincenzo Stornelli, 2018. "Solar Photovoltaic Panels Combined with Energy Storage in a Residential Building: An Economic Analysis," Sustainability, MDPI, vol. 10(9), pages 1-29, August.
    12. Andreolli, Francesca & D’Alpaos, Chiara & Moretto, Michele, 2022. "Valuing investments in domestic PV-Battery Systems under uncertainty," Energy Economics, Elsevier, vol. 106(C).
    13. Federica Cucchiella & Idiano D’Adamo & Massimo Gastaldi, 2017. "The Economic Feasibility of Residential Energy Storage Combined with PV Panels: The Role of Subsidies in Italy," Energies, MDPI, vol. 10(9), pages 1-18, September.
    14. Avilés A., Camilo & Oliva H., Sebastian & Watts, David, 2019. "Single-dwelling and community renewable microgrids: Optimal sizing and energy management for new business models," Applied Energy, Elsevier, vol. 254(C).
    15. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    16. Yazhou Zhao & Xiangxi Qin & Xiangyu Shi, 2022. "A Comprehensive Evaluation Model on Optimal Operational Schedules for Battery Energy Storage System by Maximizing Self-Consumption Strategy and Genetic Algorithm," Sustainability, MDPI, vol. 14(14), pages 1-34, July.
    17. Zhang, Yijie & Ma, Tao & Elia Campana, Pietro & Yamaguchi, Yohei & Dai, Yanjun, 2020. "A techno-economic sizing method for grid-connected household photovoltaic battery systems," Applied Energy, Elsevier, vol. 269(C).
    18. Ahsan, Syed M. & Khan, Hassan A. & Hassan, Naveed-ul & Arif, Syed M. & Lie, Tek-Tjing, 2020. "Optimized power dispatch for solar photovoltaic-storage system with multiple buildings in bilateral contracts," Applied Energy, Elsevier, vol. 273(C).
    19. Liu, Jia & Chen, Xi & Yang, Hongxing & Li, Yutong, 2020. "Energy storage and management system design optimization for a photovoltaic integrated low-energy building," Energy, Elsevier, vol. 190(C).
    20. Fernando Echevarría Camarero & Ana Ogando-Martínez & Pablo Durán Gómez & Pablo Carrasco Ortega, 2022. "Profitability of Batteries in Photovoltaic Systems for Small Industrial Consumers in Spain under Current Regulatory Framework and Energy Prices," Energies, MDPI, vol. 16(1), pages 1-19, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:304:y:2021:i:c:s030626192101182x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.