IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i10p3845-d822220.html
   My bibliography  Save this article

Optimization of Large-Scale Battery Storage Capacity in Conjunction with Photovoltaic Systems for Maximum Self-Sustainability

Author

Listed:
  • Qusay Hassan

    (Department of Mechanical Engineering, University of Diyala, Baqubah 32001, Iraq)

  • Bartosz Pawela

    (Faculty of Energy and Fuels, AGH University of Science and Technology, 30059 Krakow, Poland)

  • Ali Hasan

    (Department of Computer Engineering, Al-Turath University College, Baghdad 27134, Iraq)

  • Marek Jaszczur

    (Faculty of Energy and Fuels, AGH University of Science and Technology, 30059 Krakow, Poland)

Abstract

The photovoltaic array has gained popularity in the global electrical market. At the same time, battery storage, which is recently being placed by energy consumers alongside photovoltaics, continues to fall in price. Domestic and community loads may be combined utilizing central battery storage and shared solar power through an integrated grid or microgrid system. One of the main targets is maximum self-sustainability and independence of the microgrid system and implemented solution. This research study looks at the energy flows in a single household system that includes solar arrays and battery storage. The analysed household system is represented by a model which uses real load profiles from experimental measurements, local solar distribution, and onsite weather data. The results show that depending on the system configuration, two important parameters, self-consumption and self-sufficiency, can vary significantly. For a properly designed photovoltaic system, the energy self-consumption can be up to 90.19%, while self-sufficiency can be up to 82.55% for analysed cases. As an outcome, a large sample size with a variety of setups is recommended for a thorough examination of self-sustainability. Regional variations can worsen under different weather conditions, different photovoltaic and battery capacities, and different municipal rules.

Suggested Citation

  • Qusay Hassan & Bartosz Pawela & Ali Hasan & Marek Jaszczur, 2022. "Optimization of Large-Scale Battery Storage Capacity in Conjunction with Photovoltaic Systems for Maximum Self-Sustainability," Energies, MDPI, vol. 15(10), pages 1-21, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3845-:d:822220
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/10/3845/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/10/3845/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Say, Kelvin & Schill, Wolf-Peter & John, Michele, 2020. "Degrees of displacement: The impact of household PV battery prosumage on utility generation and storage," Applied Energy, Elsevier, vol. 276(C).
    2. Jindal, Abhinav & Shrimali, Gireesh, 2022. "At scale adoption of battery storage technology in Indian power industry: Enablers, frameworks and policies," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    3. Hassan, Qusay, 2021. "Evaluation and optimization of off-grid and on-grid photovoltaic power system for typical household electrification," Renewable Energy, Elsevier, vol. 164(C), pages 375-390.
    4. Alnaser, Sahban W. & Althaher, Sereen Z. & Long, Chao & Zhou, Yue & Wu, Jianzhong & Hamdan, Reem, 2021. "Transition towards solar Photovoltaic Self-Consumption policies with Batteries: From the perspective of distribution networks," Applied Energy, Elsevier, vol. 304(C).
    5. Barzegkar-Ntovom, Georgios A. & Chatzigeorgiou, Nikolas G. & Nousdilis, Angelos I. & Vomva, Styliani A. & Kryonidis, Georgios C. & Kontis, Eleftherios O. & Georghiou, George E. & Christoforidis, Georg, 2020. "Assessing the viability of battery energy storage systems coupled with photovoltaics under a pure self-consumption scheme," Renewable Energy, Elsevier, vol. 152(C), pages 1302-1309.
    6. Roberts, Mike B. & Bruce, Anna & MacGill, Iain, 2019. "Impact of shared battery energy storage systems on photovoltaic self-consumption and electricity bills in apartment buildings," Applied Energy, Elsevier, vol. 245(C), pages 78-95.
    7. Litjens, G.B.M.A. & Worrell, E. & van Sark, W.G.J.H.M., 2018. "Economic benefits of combining self-consumption enhancement with frequency restoration reserves provision by photovoltaic-battery systems," Applied Energy, Elsevier, vol. 223(C), pages 172-187.
    8. Al Khafaf, Nameer & Rezaei, Ahmad Asgharian & Moradi Amani, Ali & Jalili, Mahdi & McGrath, Brendan & Meegahapola, Lasantha & Vahidnia, Arash, 2022. "Impact of battery storage on residential energy consumption: An Australian case study based on smart meter data," Renewable Energy, Elsevier, vol. 182(C), pages 390-400.
    9. Li, Yanxue & Gao, Weijun & Ruan, Yingjun, 2018. "Performance investigation of grid-connected residential PV-battery system focusing on enhancing self-consumption and peak shaving in Kyushu, Japan," Renewable Energy, Elsevier, vol. 127(C), pages 514-523.
    10. Reimuth, Andrea & Prasch, Monika & Locherer, Veronika & Danner, Martin & Mauser, Wolfram, 2019. "Influence of different battery charging strategies on residual grid power flows and self-consumption rates at regional scale," Applied Energy, Elsevier, vol. 238(C), pages 572-581.
    11. Seward, William & Qadrdan, Meysam & Jenkins, Nick, 2022. "Quantifying the value of distributed battery storage to the operation of a low carbon power system," Applied Energy, Elsevier, vol. 305(C).
    12. Jaszczur, Marek & Hassan, Qusay & Abdulateef, Ammar M. & Abdulateef, Jasim, 2021. "Assessing the temporal load resolution effect on the photovoltaic energy flows and self-consumption," Renewable Energy, Elsevier, vol. 169(C), pages 1077-1090.
    13. Henok Ayele Behabtu & Maarten Messagie & Thierry Coosemans & Maitane Berecibar & Kinde Anlay Fante & Abraham Alem Kebede & Joeri Van Mierlo, 2020. "A Review of Energy Storage Technologies’ Application Potentials in Renewable Energy Sources Grid Integration," Sustainability, MDPI, vol. 12(24), pages 1-20, December.
    14. Ceran, Bartosz & Mielcarek, Agata & Hassan, Qusay & Teneta, Janusz & Jaszczur, Marek, 2021. "Aging effects on modelling and operation of a photovoltaic system with hydrogen storage," Applied Energy, Elsevier, vol. 297(C).
    15. López-Vizcaíno, Rubén & Mena, Esperanza & Millán, María & Rodrigo, Manuel A. & Lobato, Justo, 2017. "Performance of a vanadium redox flow battery for the storage of electricity produced in photovoltaic solar panels," Renewable Energy, Elsevier, vol. 114(PB), pages 1123-1133.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hajra Khan & Imran Fareed Nizami & Saeed Mian Qaisar & Asad Waqar & Moez Krichen & Abdulaziz Turki Almaktoom, 2022. "Analyzing Optimal Battery Sizing in Microgrids Based on the Feature Selection and Machine Learning Approaches," Energies, MDPI, vol. 15(21), pages 1-22, October.
    2. Qusay Hassan & Imad Saeed Abdulrahman & Hayder M. Salman & Olushola Tomilayo Olapade & Marek Jaszczur, 2023. "Techno-Economic Assessment of Green Hydrogen Production by an Off-Grid Photovoltaic Energy System," Energies, MDPI, vol. 16(2), pages 1-20, January.
    3. Łukasz Mazur & Sławomir Cieślik & Stanislaw Czapp, 2023. "Trends in Locally Balanced Energy Systems without the Use of Fossil Fuels: A Review," Energies, MDPI, vol. 16(12), pages 1-31, June.
    4. Juan A. Tejero-Gómez & Ángel A. Bayod-Rújula, 2023. "Analysis of Photovoltaic Plants with Battery Energy Storage Systems (PV-BESS) for Monthly Constant Power Operation," Energies, MDPI, vol. 16(13), pages 1-22, June.
    5. Qusay Hassan & Aws Zuhair Sameen & Hayder M. Salman & Marek Jaszczur, 2023. "A Roadmap with Strategic Policy toward Green Hydrogen Production: The Case of Iraq," Sustainability, MDPI, vol. 15(6), pages 1-22, March.
    6. Franz Harke & Philipp Otto, 2023. "Solar Self-Sufficient Households as a Driving Factor for Sustainability Transformation," Sustainability, MDPI, vol. 15(3), pages 1-20, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qusay Hassan & Marek Jaszczur, 2021. "Self-Consumption and Self-Sufficiency Improvement for Photovoltaic System Integrated with Ultra-Supercapacitor," Energies, MDPI, vol. 14(23), pages 1-15, November.
    2. Łukasz Mazur & Sławomir Cieślik & Stanislaw Czapp, 2023. "Trends in Locally Balanced Energy Systems without the Use of Fossil Fuels: A Review," Energies, MDPI, vol. 16(12), pages 1-31, June.
    3. Jose M. Vindel & Estrella Trincado & Antonio Sánchez-Bayón, 2021. "European Union Green Deal and the Opportunity Cost of Wastewater Treatment Projects," Energies, MDPI, vol. 14(7), pages 1-18, April.
    4. Moiz Masood Syed & Gregory M. Morrison & James Darbyshire, 2020. "Shared Solar and Battery Storage Configuration Effectiveness for Reducing the Grid Reliance of Apartment Complexes," Energies, MDPI, vol. 13(18), pages 1-23, September.
    5. Jurasz, Jakub & Guezgouz, Mohammed & Campana, Pietro E. & Kies, Alexander, 2022. "On the impact of load profile data on the optimization results of off-grid energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    6. Fabian Rücker & Michael Merten & Jingyu Gong & Roberto Villafáfila-Robles & Ilka Schoeneberger & Dirk Uwe Sauer, 2020. "Evaluation of the Effects of Smart Charging Strategies and Frequency Restoration Reserves Market Participation of an Electric Vehicle," Energies, MDPI, vol. 13(12), pages 1-31, June.
    7. Li, Yanxue & Zhang, Xiaoyi & Gao, Weijun & Xu, Wenya & Wang, Zixuan, 2022. "Operational performance and grid-support assessment of distributed flexibility practices among residential prosumers under high PV penetration," Energy, Elsevier, vol. 238(PB).
    8. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu & Liu, Junyao, 2023. "A review on integration of surging plug-in electric vehicles charging in energy-flexible buildings: Impacts analysis, collaborative management technologies, and future perspective," Applied Energy, Elsevier, vol. 331(C).
    9. Qusay Hassan & Imad Saeed Abdulrahman & Hayder M. Salman & Olushola Tomilayo Olapade & Marek Jaszczur, 2023. "Techno-Economic Assessment of Green Hydrogen Production by an Off-Grid Photovoltaic Energy System," Energies, MDPI, vol. 16(2), pages 1-20, January.
    10. Cano, Antonio & Arévalo, Paul & Jurado, Francisco, 2022. "Evaluation of temporal resolution impact on power fluctuations and self-consumption for a hydrokinetic on grid system using supercapacitors," Renewable Energy, Elsevier, vol. 193(C), pages 843-856.
    11. Eid Gul & Giorgio Baldinelli & Pietro Bartocci, 2022. "Energy Transition: Renewable Energy-Based Combined Heat and Power Optimization Model for Distributed Communities," Energies, MDPI, vol. 15(18), pages 1-18, September.
    12. Md Jahidur Rahman & Tahar Tafticht & Mamadou Lamine Doumbia & Iqbal Messaïf, 2023. "Optimal Inverter Control Strategies for a PV Power Generation with Battery Storage System in Microgrid," Energies, MDPI, vol. 16(10), pages 1-36, May.
    13. Besagni, Giorgio & Premoli Vilà, Lidia & Borgarello, Marco & Trabucchi, Andrea & Merlo, Marco & Rodeschini, Jacopo & Finazzi, Francesco, 2021. "Electrification pathways of the Italian residential sector under socio-demographic constrains: Looking towards 2040," Energy, Elsevier, vol. 217(C).
    14. Zhu, Jianquan & Xia, Yunrui & Mo, Xiemin & Guo, Ye & Chen, Jiajun, 2021. "A bilevel bidding and clearing model incorporated with a pricing strategy for the trading of energy storage use rights," Energy, Elsevier, vol. 235(C).
    15. Younghun Choi & Takuro Kobashi & Yoshiki Yamagata & Akito Murayama, 2021. "Assessment of waterfront office redevelopment plan on optimal building energy demand and rooftop photovoltaics for urban decarbonization," Papers 2108.09029, arXiv.org.
    16. Kokou Amega & Yendoubé Laré & Ramchandra Bhandari & Yacouba Moumouni & Aklesso Y. G. Egbendewe & Windmanagda Sawadogo & Saidou Madougou, 2022. "Solar Energy Powered Decentralized Smart-Grid for Sustainable Energy Supply in Low-Income Countries: Analysis Considering Climate Change Influences in Togo," Energies, MDPI, vol. 15(24), pages 1-24, December.
    17. M. M. Hasan & Shakhawat Hossain & M. Mofijur & Zobaidul Kabir & Irfan Anjum Badruddin & T. M. Yunus Khan & Esam Jassim, 2023. "Harnessing Solar Power: A Review of Photovoltaic Innovations, Solar Thermal Systems, and the Dawn of Energy Storage Solutions," Energies, MDPI, vol. 16(18), pages 1-30, September.
    18. Dalala, Zakariya & Al-Omari, Murad & Al-Addous, Mohammad & Bdour, Mathhar & Al-Khasawneh, Yaqoub & Alkasrawi, Malek, 2022. "Increased renewable energy penetration in national electrical grids constraints and solutions," Energy, Elsevier, vol. 246(C).
    19. Vaziri Rad, Mohammad Amin & Kasaeian, Alibakhsh & Niu, Xiaofeng & Zhang, Kai & Mahian, Omid, 2023. "Excess electricity problem in off-grid hybrid renewable energy systems: A comprehensive review from challenges to prevalent solutions," Renewable Energy, Elsevier, vol. 212(C), pages 538-560.
    20. Fernando Echevarría Camarero & Ana Ogando-Martínez & Pablo Durán Gómez & Pablo Carrasco Ortega, 2022. "Profitability of Batteries in Photovoltaic Systems for Small Industrial Consumers in Spain under Current Regulatory Framework and Energy Prices," Energies, MDPI, vol. 16(1), pages 1-19, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3845-:d:822220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.