IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i12p4551-d1165064.html
   My bibliography  Save this article

Trends in Locally Balanced Energy Systems without the Use of Fossil Fuels: A Review

Author

Listed:
  • Łukasz Mazur

    (Institute of Electrical Engineering, Faculty of Telecommunications, Computer Science and Electrical Engineering, Bydgoszcz University of Science and Technology, 85-796 Bydgoszcz, Poland)

  • Sławomir Cieślik

    (Institute of Electrical Engineering, Faculty of Telecommunications, Computer Science and Electrical Engineering, Bydgoszcz University of Science and Technology, 85-796 Bydgoszcz, Poland)

  • Stanislaw Czapp

    (Faculty of Electrical and Control Engineering, Gdansk University of Technology, 80-233 Gdansk, Poland)

Abstract

In recent years, the idea of the operation of energy systems (power systems, heating systems) has changed significantly. This paper is an overview of locally balanced energy systems without the use of fossil fuels. The paper justifies the concept of local energy balancing in a new energy system that does not use fossil fuels (coal, natural gas, and crude oil), based on European Union guidelines and formal documents as well as the literature on the subject. In this context, the issue of local energy self-sufficiency, utilizing renewable energy sources, as well as the concept of local smart grids based on innovative market mechanisms are raised. Attention is also paid to technical issues with regard to locally balanced energy systems, in particular photovoltaic sources and energy storage. Challenges related to the use of electrical protection in networks with many sources of energy are described. In such networks, the power flow is not in one direction only. Moreover, the selection of protections is problematic due to the distribution of short-circuit currents. Additionally, earth fault currents in such networks may be distorted, and this negatively affects the operation of residual current devices. The basic nomenclature describing locally balanced systems has been sorted out as well. Finally, possible future research paths in the field of creating locally balanced systems without the use of fossil fuels are presented.

Suggested Citation

  • Łukasz Mazur & Sławomir Cieślik & Stanislaw Czapp, 2023. "Trends in Locally Balanced Energy Systems without the Use of Fossil Fuels: A Review," Energies, MDPI, vol. 16(12), pages 1-31, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4551-:d:1165064
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/12/4551/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/12/4551/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mudhafar Al-Saadi & Maher Al-Greer & Michael Short, 2021. "Strategies for Controlling Microgrid Networks with Energy Storage Systems: A Review," Energies, MDPI, vol. 14(21), pages 1-45, November.
    2. Alessandro Ciocia & Angela Amato & Paolo Di Leo & Stefania Fichera & Gabriele Malgaroli & Filippo Spertino & Slavka Tzanova, 2021. "Self-Consumption and Self-Sufficiency in Photovoltaic Systems: Effect of Grid Limitation and Storage Installation," Energies, MDPI, vol. 14(6), pages 1-24, March.
    3. Haleh Moghaddasi & Charles Culp & Jorge Vanegas, 2021. "Net Zero Energy Communities: Integrated Power System, Building and Transport Sectors," Energies, MDPI, vol. 14(21), pages 1-33, October.
    4. Qusay Hassan & Bartosz Pawela & Ali Hasan & Marek Jaszczur, 2022. "Optimization of Large-Scale Battery Storage Capacity in Conjunction with Photovoltaic Systems for Maximum Self-Sustainability," Energies, MDPI, vol. 15(10), pages 1-21, May.
    5. Jaszczur, Marek & Hassan, Qusay, 2020. "An optimisation and sizing of photovoltaic system with supercapacitor for improving self-consumption," Applied Energy, Elsevier, vol. 279(C).
    6. Ayusee Swain & Surender Reddy Salkuti & Kaliprasanna Swain, 2021. "An Optimized and Decentralized Energy Provision System for Smart Cities," Energies, MDPI, vol. 14(5), pages 1-21, March.
    7. Pepermans, G. & Driesen, J. & Haeseldonckx, D. & Belmans, R. & D'haeseleer, W., 2005. "Distributed generation: definition, benefits and issues," Energy Policy, Elsevier, vol. 33(6), pages 787-798, April.
    8. Hassan, Qusay, 2021. "Evaluation and optimization of off-grid and on-grid photovoltaic power system for typical household electrification," Renewable Energy, Elsevier, vol. 164(C), pages 375-390.
    9. Rasheed Abdulkader & Hayder M. A. Ghanimi & Pankaj Dadheech & Meshal Alharbi & Walid El-Shafai & Mostafa M. Fouda & Moustafa H. Aly & Dhivya Swaminathan & Sudhakar Sengan, 2023. "Soft Computing in Smart Grid with Decentralized Generation and Renewable Energy Storage System Planning," Energies, MDPI, vol. 16(6), pages 1-24, March.
    10. Hossein Shayeghi & Elnaz Shahryari & Mohammad Moradzadeh & Pierluigi Siano, 2019. "A Survey on Microgrid Energy Management Considering Flexible Energy Sources," Energies, MDPI, vol. 12(11), pages 1-26, June.
    11. Alnaser, Sahban W. & Althaher, Sereen Z. & Long, Chao & Zhou, Yue & Wu, Jianzhong & Hamdan, Reem, 2021. "Transition towards solar Photovoltaic Self-Consumption policies with Batteries: From the perspective of distribution networks," Applied Energy, Elsevier, vol. 304(C).
    12. Frank Pierie & Christian E. J. van Someren & Sandór N. M. Kruse & Gideon A. H. Laugs & René M. J. Benders & Henri C. Moll, 2021. "Local Balancing of the Electricity Grid in a Renewable Municipality; Analyzing the Effectiveness and Cost of Decentralized Load Balancing Looking at Multiple Combinations of Technologies," Energies, MDPI, vol. 14(16), pages 1-35, August.
    13. Luthander, Rasmus & Widén, Joakim & Nilsson, Daniel & Palm, Jenny, 2015. "Photovoltaic self-consumption in buildings: A review," Applied Energy, Elsevier, vol. 142(C), pages 80-94.
    14. Paweł Pijarski & Piotr Kacejko & Piotr Miller, 2023. "Advanced Optimisation and Forecasting Methods in Power Engineering—Introduction to the Special Issue," Energies, MDPI, vol. 16(6), pages 1-20, March.
    15. Jerry L. Holechek & Hatim M. E. Geli & Mohammed N. Sawalhah & Raul Valdez, 2022. "A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050?," Sustainability, MDPI, vol. 14(8), pages 1-22, April.
    16. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    17. Schmidt, J. & Schönhart, M. & Biberacher, M. & Guggenberger, T. & Hausl, S. & Kalt, G. & Leduc, S. & Schardinger, I. & Schmid, E., 2012. "Regional energy autarky: Potentials, costs and consequences for an Austrian region," Energy Policy, Elsevier, vol. 47(C), pages 211-221.
    18. Roberts, Mike B. & Bruce, Anna & MacGill, Iain, 2019. "Impact of shared battery energy storage systems on photovoltaic self-consumption and electricity bills in apartment buildings," Applied Energy, Elsevier, vol. 245(C), pages 78-95.
    19. Zahid Ullah & Arshad & Hany Hassanin & James Cugley & Mohammed Al Alawi, 2022. "Planning, Operation, and Design of Market-Based Virtual Power Plant Considering Uncertainty," Energies, MDPI, vol. 15(19), pages 1-16, October.
    20. Kasaei, Mohammad Javad & Gandomkar, Majid & Nikoukar, Javad, 2017. "Optimal management of renewable energy sources by virtual power plant," Renewable Energy, Elsevier, vol. 114(PB), pages 1180-1188.
    21. Ali Ahmadian & Kumaraswamy Ponnambalam & Ali Almansoori & Ali Elkamel, 2023. "Optimal Management of a Virtual Power Plant Consisting of Renewable Energy Resources and Electric Vehicles Using Mixed-Integer Linear Programming and Deep Learning," Energies, MDPI, vol. 16(2), pages 1-17, January.
    22. Grzegorz Augustyn & Jerzy Mikulik & Rafał Rumin & Marta Szyba, 2021. "Energy Self-Sufficient Livestock Farm as the Example of Agricultural Hybrid Off-Grid System," Energies, MDPI, vol. 14(21), pages 1-22, October.
    23. Amrutha Raju Battula & Sandeep Vuddanti & Surender Reddy Salkuti, 2021. "Review of Energy Management System Approaches in Microgrids," Energies, MDPI, vol. 14(17), pages 1-32, September.
    24. Masato Oota & Yumiko Iwafune & Ryozo Ooka, 2021. "Estimation of Self-Sufficiency Rate in Detached Houses Using Home Energy Management System Data," Energies, MDPI, vol. 14(4), pages 1-21, February.
    25. Ramos-Suárez, J.L. & Ritter, A. & Mata González, J. & Camacho Pérez, A., 2019. "Biogas from animal manure: A sustainable energy opportunity in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 137-150.
    26. Jing, Wenlong & Lai, Chean Hung & Wong, Wallace S.H. & Wong, M.L. Dennis, 2018. "A comprehensive study of battery-supercapacitor hybrid energy storage system for standalone PV power system in rural electrification," Applied Energy, Elsevier, vol. 224(C), pages 340-356.
    27. Zahid Ullah & Arshad & Hany Hassanin, 2022. "Modeling, Optimization, and Analysis of a Virtual Power Plant Demand Response Mechanism for the Internal Electricity Market Considering the Uncertainty of Renewable Energy Sources," Energies, MDPI, vol. 15(14), pages 1-16, July.
    28. Hernández, J.C. & Sanchez-Sutil, F. & Muñoz-Rodríguez, F.J. & Baier, C.R., 2020. "Optimal sizing and management strategy for PV household-prosumers with self-consumption/sufficiency enhancement and provision of frequency containment reserve," Applied Energy, Elsevier, vol. 277(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tao Sun & Qiang Zhang & Jing Ye & Rong Guo & Rongze Chen & Jianguo Chen & Rui Xiong & Jitao Zhu & Yue Cao, 2023. "Storage Optimization (r, Q) Strategy under Condition-Based Maintenance of Key Equipment of Coal-Fired Power Units in Carbon Neutrality Era," Energies, MDPI, vol. 16(14), pages 1-16, July.
    2. Zbigniew Kłosowski & Łukasz Mazur, 2023. "Influence of the Type of Receiver on Electrical Energy Losses in Power Grids," Energies, MDPI, vol. 16(15), pages 1-22, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qusay Hassan & Marek Jaszczur, 2021. "Self-Consumption and Self-Sufficiency Improvement for Photovoltaic System Integrated with Ultra-Supercapacitor," Energies, MDPI, vol. 14(23), pages 1-15, November.
    2. Ali Ahmadian & Kumaraswamy Ponnambalam & Ali Almansoori & Ali Elkamel, 2023. "Optimal Management of a Virtual Power Plant Consisting of Renewable Energy Resources and Electric Vehicles Using Mixed-Integer Linear Programming and Deep Learning," Energies, MDPI, vol. 16(2), pages 1-17, January.
    3. Qusay Hassan & Bartosz Pawela & Ali Hasan & Marek Jaszczur, 2022. "Optimization of Large-Scale Battery Storage Capacity in Conjunction with Photovoltaic Systems for Maximum Self-Sustainability," Energies, MDPI, vol. 15(10), pages 1-21, May.
    4. Sulman Shahzad & Muhammad Abbas Abbasi & Hassan Ali & Muhammad Iqbal & Rania Munir & Heybet Kilic, 2023. "Possibilities, Challenges, and Future Opportunities of Microgrids: A Review," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    5. M. M. Hasan & Shakhawat Hossain & M. Mofijur & Zobaidul Kabir & Irfan Anjum Badruddin & T. M. Yunus Khan & Esam Jassim, 2023. "Harnessing Solar Power: A Review of Photovoltaic Innovations, Solar Thermal Systems, and the Dawn of Energy Storage Solutions," Energies, MDPI, vol. 16(18), pages 1-30, September.
    6. Qusay Hassan & Aws Zuhair Sameen & Hayder M. Salman & Marek Jaszczur, 2023. "A Roadmap with Strategic Policy toward Green Hydrogen Production: The Case of Iraq," Sustainability, MDPI, vol. 15(6), pages 1-22, March.
    7. Franz Harke & Philipp Otto, 2023. "Solar Self-Sufficient Households as a Driving Factor for Sustainability Transformation," Sustainability, MDPI, vol. 15(3), pages 1-20, February.
    8. Andreolli, Francesca & D'Alpaos, Chiara & Kort, Peter, 2023. "Does P2P Trading Favor Investments in PV-Battery Systems?," FEEM Working Papers 330498, Fondazione Eni Enrico Mattei (FEEM).
    9. Shanmugarajah Vinothine & Lidula N. Widanagama Arachchige & Athula D. Rajapakse & Roshani Kaluthanthrige, 2022. "Microgrid Energy Management and Methods for Managing Forecast Uncertainties," Energies, MDPI, vol. 15(22), pages 1-22, November.
    10. Anindya Bharatee & Pravat Kumar Ray & Bidyadhar Subudhi & Arnab Ghosh, 2022. "Power Management Strategies in a Hybrid Energy Storage System Integrated AC/DC Microgrid: A Review," Energies, MDPI, vol. 15(19), pages 1-18, September.
    11. Francesca Andreolli & Chiara D'Alpaos & Peter Kort, 2023. "Does P2P Trading Favor Investments in PV-Battery Systems?," Working Papers 2023.02, Fondazione Eni Enrico Mattei.
    12. Song, Jeonghun & Oh, Si-Doek & Song, Seung Jin, 2019. "Effect of increased building-integrated renewable energy on building energy portfolio and energy flows in an urban district of Korea," Energy, Elsevier, vol. 189(C).
    13. Salil Madhav Dubey & Hari Mohan Dubey & Manjaree Pandit & Surender Reddy Salkuti, 2021. "Multiobjective Scheduling of Hybrid Renewable Energy System Using Equilibrium Optimization," Energies, MDPI, vol. 14(19), pages 1-20, October.
    14. Moiz Masood Syed & Gregory M. Morrison & James Darbyshire, 2020. "Shared Solar and Battery Storage Configuration Effectiveness for Reducing the Grid Reliance of Apartment Complexes," Energies, MDPI, vol. 13(18), pages 1-23, September.
    15. McKenna, Russell, 2018. "The double-edged sword of decentralized energy autonomy," Energy Policy, Elsevier, vol. 113(C), pages 747-750.
    16. Mehdi Dhifli & Abderezak Lashab & Josep M. Guerrero & Abdullah Abusorrah & Yusuf A. Al-Turki & Adnane Cherif, 2020. "Enhanced Intelligent Energy Management System for a Renewable Energy-Based AC Microgrid," Energies, MDPI, vol. 13(12), pages 1-18, June.
    17. Bernadette Fina & Hans Auer, 2020. "Economic Viability of Renewable Energy Communities under the Framework of the Renewable Energy Directive Transposed to Austrian Law," Energies, MDPI, vol. 13(21), pages 1-31, November.
    18. Fachrizal, Reza & Shepero, Mahmoud & Åberg, Magnus & Munkhammar, Joakim, 2022. "Optimal PV-EV sizing at solar powered workplace charging stations with smart charging schemes considering self-consumption and self-sufficiency balance," Applied Energy, Elsevier, vol. 307(C).
    19. Marta Szyba & Jerzy Mikulik, 2022. "Energy Production from Biodegradable Waste as an Example of the Circular Economy," Energies, MDPI, vol. 15(4), pages 1-16, February.
    20. Jouttijärvi, Sami & Lobaccaro, Gabriele & Kamppinen, Aleksi & Miettunen, Kati, 2022. "Benefits of bifacial solar cells combined with low voltage power grids at high latitudes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4551-:d:1165064. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.